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Abstract

Declarative SQL queries are a way of abstracting out the underlying com-
plexity in Wireless sensor-actuator networks (WSAN). Current SQL syntax
to perform actuation tasks misleads the user because of their artificial way of
expressing the actuation tasks thus violating the purpose of the declarative
nature. Particularly with respect to distributed in-network actuation tasks
where multiple sensor nodes and actuator nodes involve, the user may be re-
quired to write multiple queries based on the current actuation query syntax
causing a negative impact on the performance. We address these issues in
existing declarative layer with modifications to the virtual data table of the
abstraction and thus a new syntax is suggested and implemented. We also
introduce a new in-network execution strategy for suggested query syntax
to address performance issues of distributed in-network actuation scenarios.
Using prototype implementations, we provide evidence to prove that our
solution addresses the identified issues of existing works.



”The dream is not what you see in sleep, dream is which does not let you
sleep”

- Dr. Abdul Kalam
(famous scientist and a former president of India)
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Chapter 1

Introduction

Wireless sensor networks(WSN) [11] consists of small wireless enable embed-
ded devices called motes in large numbers. They are used for tasks such
as environmental monitoring and tactical surveillance[15, 22]. Motes are
capable of taking readings from their built-in sensors and transmitting to a
specified location for further processing and analyzing. By the nature of their
applications, motes have to be low cost and should be able to run on battery
power making them resource constrained in all aspects including memory
capacity and CPU power. While motes are capable of sensing the environ-
ment, various real world applications raise the requirement of controlling the
environment by performing actions based on sensor readings. To this end,
actuators such as switches and regulators can be connected to motes to per-
form actuation tasks. Such networks are known as wireless sensor-actuator
networks (WSAN)[1].

Due to hardware limitations of motes it is necessary to write low level
application codes carefully managing the memory and saving battery power
as much as possible for a longer service life. One approach of making the
WSN users life easier is high-level programming abstractions which hide the
low level hardware details. Database abstraction for WSNs [3] like Cougar
[23] and TinyDB [13] are such abstractions where the whole network is rep-
resented as a virtual database table and each column of the table is mapped
to a sensor type available in the network.

In such implementations, the data of the network is acquired by run-
ning SQL queries over the virtual table. SQL enables the user to specify
which data to be acquired from the virtual table in a declarative way with-
out bothering how the data is acquired. However with respect to complex
sensing associated with actuating requirements, current declarative interface
for sensor networks exhibit serious weaknesses making them unusable for
such scenarios. Moreover, there’s no easy or declarative mechanism to ob-
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Figure 1.1: A greenhouse with multiple sensor and actuator nodes. The
actuators include an air cooler, a screen controller and a sprinkler which are
fixed inside the greenhouse while the sensors include a temperature sensor
and a humidity sensor which are placed outside the greenhouse. Only the
nodes relevant to the queries are given for simplicity.

tain meta level information on actuators in WSAN which is important for
actuator monitoring purposes. We illustrate a scenario with respect to a
greenhouse cultivation [4] for the purpose of pinpointing the weaknesses in
the current approach.

1.1 An Actuation Scenario

In a greenhouse environment it is particularly crucial to manage the en-
vironment effectively by controlling the environmental parameters such as
temperature, light, humidity, CO2, ambient pressure and wind flow. There
are actuators to control these parameters and these may include screen con-
trollers/carton sliders to protect the cultivation from direct sunlight, heaters
and air coolers to maintain humidity and temperature, fans to maintain the
wind flow and also actuators to inject CO2 to influence photosynthesis.

In order to obtain the real benefit of deploying WSAN in this context the
end user should be able to monitor and thus to control the environmental
parameters (which may subject to dynamic changes) through controlling rel-
evant actuators accordingly. By the nature of the application, the network
may have three types of motes which are motes with sensors only, motes with
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actuators only and motes with both sensors and actuators.
Consider as such a scenario where a WSAN deployed for a greenhouse to

monitor the condition of the field continuously and to perform actions when
necessary. Assume that this network employs a TinyDB [13] like abstraction
to monitor the network since TinyDB provides more facilities for WSAN.
If climate sensors (say motes 5 and 7) fixed outside the greenhouse sense
an outside temperature greater than 35 ◦C and humidity level greater than
45, the user requires to switch on an air cooler, a screen controller and a
sprinkler attached to motes 9, 15 and 23 respectively which are fixed inside
the greenhouse. Figure 1.1 depicts this greenhouse environment.

To check the relevant sensor readings of the relevant nodes, user has to
send Query-1 on TinyDB abstraction layer. If this query generate results
from motes 5 and 7, that means the sensors of our concern have the suitable
values to perform the actuation. Based on that results, the user has to send
actuation queries as shown in Query-2, 3 and 4 targeting at each node and
their actuators accordingly.

Query-1

SELECT nodeid

FROM sensors

WHERE (nodeid=5 OR nodeid=7)

AND temperature>35 AND humidity>45

ONCE;

Query-2

SELECT nodeid

FROM sensors

WHERE nodeid=9

OUTPUT ACTION air-cooler-on()

ONCE;

Query-3

SELECT nodeid

FROM sensors

WHERE nodeid=15

OUTPUT ACTION screen-ctrl-on()

ONCE;
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Query-4

SELECT nodeid

FROM sensors

WHERE nodeid=23

OUTPUT ACTION sprinkler-on()

ONCE;

TinyDB’s query language follows conventional SQL syntax to acquire
data from the virtual database table with some additions to support exclusive
requirements in sensor networks as explained in detail in the following section.

1.2 Problem Of Actuation Queries

We identify three main issues in current actuation queries in the declarative
interface. Firstly when performing the actuation with existing queries, user
has to write SELECT queries with the OUTPUT ACTION clause. Due
to this new clause, the query does not return any data requested by the
SELECT query and instead calls the low level function to perform the ac-
tuation. However when writing or reading SELECT queries, semantically it
represents displaying of data relevant to the stated columns with respect to
a database table. However, these actuation queries performed by enhanced
SELECT queries are not intended to display or return any data thus confus-
ing the query writer. This is due to the misuse of ’SELECT nodeid’ when
the exact node id is defined in the WHERE clause as in Query-2, 3 and 4.
Therefore the user does not receive the true advantage of declarative interface
when the syntax is in this type of an artificial way.

Secondly, when multiple sensors and actuators are to be involved in an
actuation task as the given scenario, the user may have to write number
of queries for checking different sensor conditions before actuating different
actuators. This multiple query usage leads to time delays as human inter-
vention is required to issue each query from a sequence of queries. Moreover
if the user forgets/misses to issue a query from the corresponding query se-
quence the expected control outcome cannot be achieved. As such multiple
query usage is not recommended if time delays between sensing and actuating
is required to be as minimum as possible for time critical tasks. Additionally
multiple queries results in more power usage of nodes reducing the service
life of the network. These issues become worse when the number of nodes in
the network grows in large numbers.

Finally since the existing data model of declarative interface does not
provide an abstraction over actuators, they have to be activated by calling
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low level functions. Therefore existing data model does not provide any easy
mechanism to find the status of actuators if actuation tasks have to be done
based on the current status of actuators.

1.3 Project Scope

The scope of this research is to fix two main issues identified in the declarative
interface for wireless sensor-actuator networks. Those research problems are
as follows.

1. Violation of declarative nature in existing actuation query syntax.

2. Inefficiency of performing actuation tasks using the existing query syn-
tax.

In this research we address those issues in existing declarative layer with
modifications to the virtual data table of the abstraction and with new syn-
tax suggestions for actuation queries. We also introduce a new in-network
execution strategy for suggested query syntax to address performance issues
of distributed in-network actuation scenarios. We show that our suggested
solution address the identified problems so that,

1. New syntax is more declarative than existing syntax.

2. New syntax can be efficiently used to perform actuation tasks than the
existing syntax.
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Chapter 2

Background and Related Works

Research on wireless sensor networks(WSN) [11] have been matured to a level
where they can be a part of our day to day life. They have been deployed
in industrial environments where reliability and real-time performance is a
must. Recently traditional wireless sensor networks have integrated with a
new functionality which has taken it to a new world which is full of new
opportunities and at the same time new problems. That new functionality
is the actuation. An actuator is a component which takes control commands
as input and act on the deployed environment to make a change in it. WSNs
integrated with actuators as nodes have created the new research domain
widely known as Wireless sensor-actuator networks(WSAN) [1, 19].

In this chapter we discuss the existing WSAN related research particu-
larly with the focus on actuation criteria. According to the scope of this
research, our major concern is on declarative query interfaces to WSANs
and therefore we categorize existing work into two different parts namely
declarative interfaces and non-declarative interfaces to WSANs. We discuss
about their functionality and compare and contrast them against different
real world scenarios. We highlight gaps and pitfalls in existing works to
identify the correct way to go.

2.1 Declarative query interfaces for WSAN

2.1.1 Advantage of declarative interface

With the introduction of the relational model[5] it became the ideal way
of storing data in large amounts. There have been different languages intro-
duced to express the criteria of querying data from these relational databases.
Most of them are based on relational algebra and relational calculus. How-
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ever finally Structured Query Language(SQL) which was previously known as
SEQUEL became the de facto query language for relational databases which
is simple, easy to learn and at the same time expressive enough to interact
with relational databases[2]. The declarative nature of SQL made it possible
for even ordinary people who are non-specialists in relational databases to
interact with it easily.

Because of the underlying complexity of WSNs, researchers have consid-
ered the possibility of providing abstractions to ease the task of non-computer
scientists to deploy and use WSNs. A major consideration among these works
is the abstraction of WSNs as a database [3, 7]. In such database abstractions
for WSNs, SQL unarguably became the query language of them because of
the same features that helped it to be selected for relational databases.

2.1.2 Declarative interface for monitoring

There are several papers published pushing the idea of SQL database ab-
stractions for sensor networks. One of the earliest such implementations is
Cougar[23] which had declarative queries to acquire sensor data. The au-
thors of Cougar pinpointed two main reasons which have motivated them to
consider the possibility of SQL database abstractions for WSN environments.
Firstly, the declarative queries are a very good way to interact with the WSN
by the end users and user applications without knowing how the data is gen-
erated and processed within the network. Secondly they have noticed that
in-network query processing saves energy in the network.

Cougar also came with in-network data aggregation and query optimiza-
tion mechanisms which improve the functionality and advantages of SQL
queries. For each query issued by the user level, the gateway node prepares
a query plan which is optimized for better execution of the query. To real-
ize in-network data aggregations, a leader node is used within the network
according to the query plan for each query.

The introduction of TinyDB [13, 14] can be considered as a major achieve-
ment in the declarative query abstractions for WSNs. In the Cougar ap-
proach, it assumes the prior existent of sensor data on the nodes of the
network. The queries of Cougar were applied to those previously retrieved
data. When compared to Cougar, TinyDB introduced and implemented the
concept of acquisitional queries where the queries are executed in the sen-
sor nodes to acquire data from the sensors in real-time. Similar to Cougar,
TinyDB views the WSN as a single database table with each sensor type
mapped to a particular column. Tuples of the table are appended at real-
time with a time gap between each two tuples.

TikiriDB [10] is another database abstraction layer for WSNs which fol-
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lows a similar kind of approach to TinyDB. The major difference between
TikiriDB and TinyDB lays on the support for multiple base stations in the
former. Therefore WSNs that are shared between multiple users can be im-
plemented using TikiriDBs SQL database abstraction. Syntaxs of queries
provided in TikiriDB are almost similar to TinyDBs syntaxs.

In the following example we compare a conventional SQL query that we
can find in a database management system(DBMS) like MySQL[18] with
an acquisitional query. Consider a database table named as sensors in a
conventional database. This table contains some environmental parameters
taken previously and stored for a future use. The columns of the table are
defined as id, temperature and humidity which all are integers. The id column
is an auto increment field which gets incremented each time we insert a new
tuple to the table. When we need to get the tuples from the table where
temperature field has a value more than 25, we issue a SELECT query like
the following.

Query-5

SELECT nodeid,temperature,humidity

FROM sensors

WHERE temperature > 25

The SELECT keyword specify the data fields which should be included
in the result data set while the FROM keyword specify from which table the
data should be retrieved. Finally the WHERE keyword specify the criteria
to retrieve the data so that only the required data set will be retrieved from
the table. The SELECT query in a conventional database works in this way.

Now lets consider a different scenario. There is a WSN deployed in a
field where the nodes can measure temperature and humidity parameters of
the environment. Each node is assigned an identification number to identify
uniquely. This WSN has TinyDB installed on all the nodes and therefore
the base station allows to issue SQL queries to acquire data. Say we need to
acquire sensor readings from the sensor network in every second for a time
period of 10 seconds but only if the temperature of the sensor readings are
more than 25. The following query shows how we specify our criteria.

Query-6

SELECT nodeid,temperature,humidity

FROM sensors

WHERE temperature > 25

SAMPLE PERIOD 1s FOR 10s
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The TinyDBs database model shows the whole WSN as a single database
table named as sensors. In this model, all the sensor types in a node of the
sensor network are mapped into the columns of the sensors table so that
id, temperature and humidity become the columns. According to this model
SELECT, FROM and WHERE keywords serve the same functionality of the
Query-5. The SAMPLE PERIOD and FOR keywords are additions to the
SQL syntax by TinyDB to specify how the sensor readings should be taken
over the time. Here we have specified that we need readings in every second
for a period of 10 seconds. Such a syntax is necessary since we are dealing
with real-time data in the WSN. TinyDB provides various new syntaxes for
data acquisition from the WSN which are defined in [13, 14].

2.1.3 Declarative interface for controlling

Even though Cougar provide queries to get sensor readings from a WSN, it
does not provide any support to control the environment where the WSN is
deployed using the same declarative queries. However TinyDB have added
new keywords to its query language for controlling actuators. For example
consider the following TinyDB query.

Query-7

SELECT nodeid,temperature

FROM sensors

WHERE temperature > 25

OUTPUT ACTION sprinkler-on()

SAMPLE PERIOD 10s

In this query SELECT, FROM and WHERE keywords are the same as
previous queries. The SAMPLE PERIOD specifies that this query should be
executed for every 10 seconds. The new keyword we find here is OUTPUT
ACTION which can be used to specify a low level function. If there is some
output data set after the execution of the query then the specified low level
function gets called. In this particular scenario, if the temperature reading
of a node is greater than 25 the mote calls the low level system function
sprinkler-on(). Because of the presence of OUTPUT ACTION keyword in
the query, the SELECT query prevents from sending the result set back to
the base station.

The low level function which is given as the parameter to the OUTPUT
ACTION keyword can be used to trigger an actuator device attached to the
sensor mote. For example lets say that sprinkler-on() function can switch
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on a sprinkler attached to a sensor node in the network. When the Query-7
is received to a node, it takes readings from its temperature sensor in every
10 seconds. If the value is greater than 25, the node calls its sprinkler-on()
system function to switch on the sprinkler attached to the node. In this way
we can use queries provided in TinyDB to control the environment. This case
is an example for local in-network actuation since both sensor and actuator
reside in the same node.

Even though a single query like the one above can be used in local in-
network actuation scenarios, multiple complex queries have to be used in
scenarios where distributed in-network actuation is necessary. To illustrate
such queries of TinyDB consider the following scenario.

A WSAN has been deployed as a part of a building monitoring system
where the systems responsibility is to monitor different environmental pa-
rameters in different parts of the building. In addition to that the system is
responsible for controlling power supply of each of those parts of the building
by switching power supply on and off. To achieve such a functionality, each
and every sensor mote of the network is equipped with temperature, humid-
ity and light sensors. For switching actuators, sensor motes are connected
to specialized hardware components which provides facility for the mote to
control power supply to different connected devices. The software layer of
the system operates with the database abstraction of TinyDB.

Now we have a requirement to turn off a specific light bulb in a room if
the light level of the environment goes higher than a threshold value. Lets
say the light level measurements are taken by a node (nodeid 2) which resides
near the window of the room while the light bulb controller is connected to
another node (nodeid 3) that resides at the center of the room. This is a
distributed actuation scenario since the actuator and sensor are residing in
separate nodes. Based on the grammar definition of TinyDBs query language,
we can identify three approaches to achieve the above actuation requirement.

Approach-1

First we can issue a query (Query-8) from the base station which will monitor
the light level readings of the room. If light level exceed the threshold value
(40), base station receives a result set from the sensing node. If so, base
station issues the next query (Query-9) which will make the actor node to
turn off the light bulb.
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Query-8

SELECT nodeid,light

FROM sensors

WHERE nodeid = 2 AND light > 40

SAMPLE PERIOD 10s

Query-9

SELECT nodeid

FROM sensors

WHERE nodeid = 3

OUTPUT ACTION power-off()

SAMPLE PERIOD 1s FOR 1s;

Approach-2

We can issue a query (Query-10) from the base station which is a kind of
a query that will gets executed only when a special event is triggered. The
special keyword ON EVENT is used to specify the event name. This query
is store on the sensor node and waits until the event triggers. After issuing
this query we issue another query (Query-11) targeting the same sensor node.
This second query continuously monitors the light level of the room. If it
exceeds the threshold value it triggers the first query by sending the event
signal which is specified by the SIGNAL keyword. When the event received
to first query, sensor node broadcasts the select query which is embedded in
the event query to the actuator node. Now the actuator node can turn the
light bulb off.

Query-10

ON EVENT light-high():

SELECT nodeid

FROM sensors

WHERE nodeid = 3

OUTPUT ACTION power-off()

SAMPLE PERIOD 1s FOR 1s;

Query-11

SELECT nodeid

FROM sensors

WHERE nodeid = 2 AND light > 40

OUTPUT ACTION SIGNAL light-high()

SAMPLE PERIOD 10s;
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Approach-3

Since the OUTPUT ACTION keyword in TinyDB permits to embed a SE-
LECT query in it, we can issue a query like the below one targeting the
sensor node. If the conditions in WHERE clause results true, the embedded
SELECT query is sent from the sensor node to the actor node to perform
the actuation.

Query-12

SELECT nodeid

FROM sensors

WHERE nodeid = 2 AND light > 40

OUTPUT ACTION

(

SELECT nodeid

FROM sensors

WHERE nodeid = 3

OUTPUT ACTION power-off()

SAMPLE PERIOD 1s FOR 1s

)

SAMPLE PERIOD 10s;

Among these three approaches, the first two involves more than one query
resulting the drawbacks described in the chapter 1 while the third approach
does not lead to those drawbacks in this particular scenario. However there
are real world situations where the usage of embedded SELECT queries
inside the OUTPUT ACTION clause also does not provide enough expressive
power to perform an actuation task using a single query.

For example if the actuation decision has to be taken based on the light
level taken by one sensor node and the room temperature taken by another
sensor node, the WHERE clause of the enclosing SELECT query cannot be
used to specify all the conditions by a single query. In such a situation we
have to go for approach one and at first use multiple SELECT queries to
check all the conditions. Finally the actuation decision have to be taken at
the base station before sending the actuation query.

Similarly if we have to activate different hardware devices based on the
readings of the sensor nodes we face difficulties again. For example if we
have to turn off the light bulb connected to a one actuator node and ring a
bell connected to another actuator node when the light level goes high, we
have no way to express it by a single query due to the limited facilities in the
OUTPUT ACTION clause. In that situation also we have to go for multiple
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actuation queries sent from the base station which leads to the drawbacks
explained previously.

This discussion highlights the fact that the existing distributed in-network
actuation queries provided in TinyDB are not applicable in certain real world
application scenarios and therefore it needs to be improved if we want to use
declarative query interface in real world WSAN environments.

2.2 Non-declarative interfaces for WSAN

In the literature a common assumption has been applied when designing
WSANs which is the actuator nodes in the network are more resource rich
when compared to the sensor nodes specially in energy[1]. This is mainly
due to the fact that actuator nodes are connected to external devices for
performing actions and therefore they can be directly connected to an exter-
nal power source without relying on batteries. Therefore computational and
communication intensive tasks are more likely to be performed on actuator
nodes rather than on sensor nodes.

The traditional WSN systems which are intended for collecting data ba-
sically follow a centralized architecture where sensor data is sent to the base
station over the network so that anything to be done with data is performed
outside the network. However when comes to WSANs with the addition of
actuators the total paradigm got changed [9, 8]. WSANs involve a loop of
event sensing, decision making and actuating unlike the WSNs where sensing
is the only action of interest. Therefore applying the general WSN architec-
ture of centralized base station control simply does not work. Scalability,
associated delays and power consumption makes the centralized architecture
almost inapplicable in large scale WSANs [12]. Therefore [8] suggests that
it is better to move the actuation cycle into the network which is introduced
as In-network actuation.

Similarly the study presented in [1] views the WSANs in two architectures
as automated and semi-automated. The semi-automated architecture follows
the traditional WSNs ie. sensor events are delivered to the base station
where the actuation decisions are made and sent back to the actuators over
the network. The automated architecture is the one called as in-network
actuation in [8] where sensors and actuators work collaboratively within the
network to perform the loop of actuation. Therefore in brief, in-network
actuation is generally considered as the correct way to go in WSANs.

When considering the literature we can identify different approaches fol-
lowed by researchers to achieve in-network actuation. The paper [8] identifies
two different middleware designs used for implementing in-network actuation
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as node-centric and network-centric designs according to the programmers
point of view. In the node-centric middleware design, the programmer fo-
cus on the functionality of each an every node in the network while in the
network-centric architecture the focus goes to the functionality of the network
as a whole. Clustering, macro-programming and query abstraction layers are
such network-centric middleware implementations.

According to [1], a proper coordination between nodes in the network is
necessary to achieve the in-network actuation in a WSAN. The coordination
between nodes can be decomposed further into two types as sensor-actuator
coordination and actuator-actuator coordination. The former type considers
how a sensor node should report an event detected to the corresponding
actuator node while the latter type considers how multiple actuators should
coordinate with each other to decide which actuator should perform the
required action for a particular event received from a sensor node.

The research done in [12] presents a clustering approach to implement an
efficient and scalable distributed in-network actuation. Sensor and actuator
nodes are clustered together in a way that nodes interested at same environ-
mental phenomenon or event source belong to the same cluster. However it is
possible for a sensor or an actuator node to join into multiple clusters. This
clustering mechanism involves a distributed algorithm which is performed on
each and every node in the network. However according to [17], that type
of predefined clustering mechanisms may not perform efficiently as we ex-
pect. If the environment is highly dynamic such that all the clusters in the
network experience events frequently then predefined clustering works. But
if the events are less frequent then this approach wastes energy of nodes to
maintain clusters unnecessarily.

Avoiding such drawbacks [17] presents a different approach where node
clustering is done on-the-fly as sensor events arrive. In their research they
have considered both sensor-actor coordination and actor-actor coordination
at different phases. The sensor-actor coordination is done using data aggre-
gation trees(da-trees). When an event is detected by some sensor nodes in
the network, one or more da-trees are generated by considering the relations
of the sensor and actor nodes which are defined as flows. The root of a
da-tree is an actor node while all the other non-terminals are sensor nodes.
The leaves of a da-tree are event sources theoretically. When building a da-
tree, geographic locations of the nodes are also taken into account so that an
efficient communication within the da-tree is achieved.

After the da-trees are generated, event details are sent from sensor nodes
in the tree to the root actor node. Event data propagation over the da-
tree uses a data fusion algorithm so that each sensor node aggregates the
received event details from child nodes with its own event details before
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sending it to the upper node in the da-tree. Therefore the energy used in
the communication is minimized. When an event is notified to an actor node
it begins the actor-actor coordination using a real-time auction protocol [17]
to select the appropriate actor node to perform the action for the detected
event. This protocol considers lot of parameters like power consumption,
geographic location and features of the event to select the appropriate actor.

A similar approach is presented in [20] with a focus in real-time perfor-
mance of the in-network actuation. In that research they use geographic
location based map trees to create clusters in real-time instead of the da-
trees in [17]. When an event is detected by some sensor nodes they create a
map tree covering there geographic location and sends the event details to
the root of the tree where the root node delivers the received event details
to its geographically closest actor node. To achieve such a functionality the
nodes should be aware of their geographical location. In this sensor-actor
coordination mechanism, the actor node to which the event details are de-
livered doesn’t have to be the most appropriate actor node to perform the
action because a separate actor-actor coordination mechanism decides it. A
major difference of this work [20] to the previously described research [17]
is the mobility support for the actor nodes in the actor-actor coordination
mechanism in this research.

In the work done in [16], two actuation techniques namely On-event trig-
gered and Self triggered actuation have been explored where both methods
helps to reduce the energy consumption by reducing the messages passed
between sensors and actuators. In the first method, the actuation decision
is taken by the sensor nodes in a distributed manner and triggers an event
to the actuator node to perform the action. Therefore the actuation decision
is taken by the sensor nodes. Unlike it, the second method is driven by the
actuator nodes where they takes the actuation decisions based on the data
received from sensor nodes. In both techniques, an actuator node should be
a root in a sub tree of the routing tree where the respective sensor nodes
are child nodes of it. An algorithm called tree wave algorithm has been used
to aggregate the messages sent within the routing tree which leads to the
reduction of energy consumption.

The authors of [9] point out the complexity of WSAN platforms due to
the wide variety of possibilities in real world deployments. For example the
network can be homogeneous with similar nodes or heterogeneous with sens-
ing and acting done on different nodes. Such complexities are hard to be
handled by the application developers of WSANs and therefore they have in-
troduced a macro-programming language named as SOSNA to address this
issue. According to the authors, SOSNA macro-programming language ab-
stracts away the underlying complexity of WSAN while providing the real-
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time functionality. However since the actuation criteria of the WSAN have
to be programmed using SOSNA, compiled and burned on the nodes flash
chips, the interactiveness of the WSAN is not achieved since the behavior
of the WSAN completely depends on the program logic. Comparing to this,
declarative interfaces like TinyDB provides more freedom for the end users of
WSAN to change actuation criteria on-the-fly even though existing queries
are not expressive enough to do it in an efficient way.
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Chapter 3

Methodology and Design

In our attempt to solve the identified issues in declarative interface, we begin
with the current data model (Table 3.1) and build a better syntax support
for actuation queries. In this process we consider requirements of distributed
in-network actuation scenarios in order to come up with a solution that could
be applicable in all such cases.

3.1 Virtual Data Table

Table 3.1 shows an example virtual table of a database abstraction over a
wireless sensor-actuator network. According to the table, there are three
nodes in the network and each node has two sensor types, temperature and
humidity. The values of those sensors shown in the table are acquired in a
particular instance of time by a SELECT query. If a node in the network
does not have a particular sensor type the corresponding cell in the table will
contain a NULL value.

Now consider each node in the network is equipped with two actuator
types namely an air cooler and a sprinkler which are controlled electroni-
cally. Since the actuators in the network are not represented in the table,
still the virtual table will look like Table 3.1 while the user have to control
actuators using low level function calls in OUTPUT ACTION clause of SE-
LECT query. Moreover, there’s no way for the user to find the current status
of each actuator in the network.

To overcome the problems associated with the current mechanism and
thus to provide the benefits of declarative interface on in-network actuation
we understand the importance of enhancing the virtual table of the database
abstraction with actuator types. As such the status of each actuator type
in the network is represented as an attribute in the virtual table in addition
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Table 3.1: Traditional sensor table
nodeid temperature humidity

1 25 40

2 28 39

3 27 NULL

4 NULL 41

Table 3.2: Enhanced table with actuators integrated

nodeid temperature humidity air cooler sprinkler

1 25 40 NULL NULL

2 28 39 off off

3 27 NULL on NULL

4 NULL 41 off on

to sensor types as shown in Table 3.2. Most significantly this enables user
to access actuators in each node just as the way sensors are accessed. Con-
sequently when the user wants to know the current status of a particular
actuator or a set of actuators in the network, simply SELECT queries as
given below will do the job.

Query-13

SELECT nodeid, air_cooler, sprinkler

FROM sensors

ONCE;

Query-14

SELECT nodeid

FROM sensors

WHERE air_cooler=’on’

ONCE;

Query-15

SELECT count(*)

FROM sensors

WHERE sprinkler<>NULL

ONCE;
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3.2 Actuation Using Updates

Since sensor attribute values in the virtual table represent real time acquired
data of the sensors, they can not be altered by the user. However actuator
attribute values in the virtual table are alterable and this enables the actuator
status to be changed according to the user requirements. This situation
opens the door to control actuators in the network by applying updates on
the virtual table using conventional UPDATE query syntax without using
low level function calls as explained previously. However since these queries
are executed over a WSAN, it is necessary to have the syntax support to
specify the sampling rate of sensor /actuator attributes just as in the existing
approach.

For instance if the user wants to turn the air cooler in node 2 to ’on’ state
only if the temperature reading of that node is greater than 20, a query like
the one shown in Query-16 can be used.

Query-16

UPDATE sensors

SET air_cooler=’on’

WHERE nodeid=2 AND temperature>20

ONCE;

When this query is sent to all the nodes in the network, each node will
evaluate the predicates in WHERE clause. If a node reveals that those
predicates are true on it, it can turn the air cooler actuator connected to it
to ’on’ state. This illustrates a local in-network actuation scenario.

3.3 Distributed In-network Actuation

When we need to perform in-network actuation tasks where multiple sensor
nodes and actuator nodes involve in a single actuation, simple queries like
the Query-16 can not be used. For instance consider the requirement that
we need to turn the air cooler to ’on’ state in both nodes 2 and 4 only if
node 1 is having a temperature reading greater than 20. We consider the
join of multiple table aliases can be used to address this requirement with
the actuation criteria specified in WHERE clause of the UPDATE query as
given in Query-17.
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Query-17

UPDATE sensors AS sen, sensors AS act

SET act.air_cooler=’on’

WHERE (act.nodeid=4 OR act.nodeid=2) AND

(sen.nodeid=1 AND sen.temperature>20)

ONCE;

Two aliases for the sensors table have been taken as sen and act. We use
the sen alias to specify the criteria of the sensor nodes while the act alias to
specify the criteria of actuator nodes. This enables distributed in-network
actuation tasks with different complex actuation criteria using a single UP-
DATE query unlike the existing actuation mechanism with SELECT queries.
The grammar definition of this UPDATE query syntax is shown below.

UPDATE <table> [AS <alias>]

{, <table> [AS <alias>]}*

SET [<alias>.]<attribute>=<value>

{, [<alias>.]<attribute>=<value>}*

[

WHERE

[<alias>.]<attribute>{<|>|=|<=|>=}<value>

{{AND|OR}

[<alias>.]<attribute>{<|>|=|<=|>=}<value>}*

]

[SAMPLE PERIOD <seconds> [FOR <nrounds>]]

| [ONCE]

3.4 Efficient Execution of Updates

Even though the syntax presented in the previous section provides the sup-
port to declarative specify actuation criteria for WSANs, there’s a weakness
in executing this suggested query syntax which limit it from executing more
efficiently than the existing queries. The problem occurs when performing
distributed in-network actuation scenarios where different sensors and actu-
ators from different nodes involve in a particular actuation scenario.

When an UPDATE query is issued to the network each node receive a
copy of it. When a node is trying to execute the query, it can access only the
sensors and actuators which are available on the node. For example consider
the Query-17 presented in the previous section. When the nodes 1, 2 and
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4 received that query they can start to execute it. Let’s say the tempera-
ture sensor reading of node 1 is recorded as 24. Then node 1 can identify
that the predicate segment (sen.nodeid=1 AND sen.temperature¿20)
is true on that node. In the mean time node 2 and 4 identify that the pred-
icate segment (act.nodeid=4 OR act.nodeid=2) is true on them. So,
the complete set of predicates in the WHERE clause evaluates to true and
therefore the actuation task should be performed now by node 2 and 4 since
they belongs to the alias which mentioned the SET clause of the query. How-
ever the problem is node 2 and 4 has no way to get to know that the total
WHERE clause of the the query has evaluated to true.

Because of this reason we need a way to execute UPDATE queries in dif-
ferent scenarios in WSANs including distributed in-network actuation scenar-
ios. One obvious option is to collect the necessary sensor data and actuator
status from the nodes to the base station and evaluate the predicates at the
base station. Then the application running on the base station can iden-
tify the nodes which should perform actions and it can send commands to
those nodes. However this method is almost same to the traditional way of
performing distributed in-network actuation tasks using SELECT queries.
The only difference is in the traditional method a human user involvement
is necessary to evaluate the actuation criteria. But since sensor data has to
come through the network to the base station to take the actuation decisions
this method is highly inefficient. Because of these reasons we are suggesting
a better execution strategy for UPDATE queries which uses less resources
from the network to perform actuation tasks.

3.4.1 Details of the network

We assume that the network is organized as a tree which is rooted at the base
station as shown in figure 3.1. Because of this tree-based architecture there
are three types of nodes available in the network as Root node, Sub-root node
and Leaf node. Each node type processes UPDATE queries in different ways
as explained shortly. This network uses special messages to exchange infor-
mation between nodes related to an execution of a query. Those messages
are namely UPDATE, SUCCESS, PARTIAL-SUCCESS and COMMAND
messages.

The UPDATE message is created at the base station (Root node) after
the user issued an UPDATE query. The figure 3.2 shows the structure of the
message. There are two main blocks in the message. First one is SET block
which contains the information of the SET clause of the query while the sec-
ond block is WHERE block which contains the information of the WHERE
clause of the query. SET block is fragmented to parts while each part repre-
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- Root Node

- Sub-root Node

- Leaf Node

Figure 3.1: Routing tree of the network with three node types as root node,
sub-root nodes and leaf nodes.

senting an alias used in the SET clause of the UPDATE query. These alias
parts are more fragmented to represent each actuator-value pair. Similarly
the WHERE block is fragmented to parts while each part representing an
alias used in the WHERE clause of the UPDATE query. These alias parts
are more fragmented to represent each predicate. Each alias included in the
message are numbered to identify uniquely. UPDATE messages propagate
from the Root node through the network until it reaches all the nodes in the
network.

A SUCCESS message is issued by a node targeting at its parent node to
inform that all the predicates in the WHERE clause of an UPDATE query
has been evaluated to true in that branch of the tree rooted at message sender
node. This message does not contain any other information. A PARTIAL-
SUCCESS message notify that not all but some of the predicates in the
query has been evaluated to true in the branch of the tree rooted at message
sender node. The message contains alias numbers which have evaluated to
true in that branch of the network along with the IDs of the nodes which
have resulted these partial evaluations. A COMMAND message is issued to a
node to perform an actuation using the actuators available on that particular
node.

3.4.2 Functionality of nodes

The behavior of each node type in the network is as follows.
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Figure 3.2: Structure of the UPDATE message.

Leaf node

A leaf node evaluates the predicate segments of an UPDATE message. If all
of the segments evaluate to true, it will execute the actuation tasks given in
the SET block of the message. Then it sends a SUCCESS message to the
parent node. It means all the predicates are evaluated to true in this node.
This message is useful for the parent node to perform its works.

If only few of the predicate segments evaluated to true, the leaf node
sends a PARTIAL-SUCCESS message to the parent node mentioning the
predicates that have been evaluated to true with its node id. If no any
predicate segment evaluated to true, then leaf node exit from executing the
query.

Sub-root node

A sub-root node waits a predefined time before it evaluates a received UP-
DATE message. If it receives at least one SUCCESS response from a child
node, this sub-root node may do one of the following things. If it has received
reports from other nodes with PARTIAL-SUCCESS of predicate segments,
this sub-root node check whether SET block of the UPDATE message has
some actuation related to those aliases that have been true in its children.
If so, the sub-root node sends COMMAND messages to those particular chil-
dren. Then sub-root node returns a SUCCESS message to its parent node.

Even though sub-root node does not receive a SUCCESS response from
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Figure 3.3: Content of the UPDATE message for Query-17.

a child node, if its child nodes PARTIAL-SUCCESS messages altogether
including the sub-root nodes local evaluations makes a complete true of all
the predicates, then the sub-root node can send COMMAND messages to the
relevant child nodes. Then it can report a SUCCESS message to the parent
node.

If all the child nodes responses are PARTIAL-SUCCESS messages and
does not evaluate to true all together, this sub-root node forwards all the
PARTIAL-SUCCESS messages including its own to the parent node.

If no child nodes responded with either SUCCESS or PARTIAL-SUCCESS
reports and sub-root node did not have evaluate anything to true either, then
this sub-root node exit from executing the query.

Root node

The root node does the same thing as sub-root nodes except one thing. Since
root node does not have a parent node, it does the following. If root node has
to report SUCCESS to parent, what it does is report to the client application
saying the query executed successfully. If root node has to report PARTIAL-
SUCCESS or no report to parent, it reports to the client application saying
the query did not has any matching tuples in the virtual table to perform
the UPDATE operation.
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Figure 3.4: Placement of nodes 1, 2 and 4 in the network for the example
case with Query-17.

3.4.3 An example case

To demonstrate how this query execution strategy works, let’s consider the
UPDATE query presented in Query-17. Figure 3.3 shows the structure of
the UPDATE message which contains the information of Query-17. The
placement of nodes in the network is as given in figure 3.4. Node 5 is a
sub-root node in a large network and our respective nodes 1, 2 and 4 reside
inside that branch rooted at node 5. When the UPDATE message is flooded
through the network it reaches all the nodes in this branch too. Since node
2 and 4 are leaf nodes they immediately start execution after receiving the
UPDATE message. In the meantime node 1 waits for a predefined time,
collects responses if any from child nodes and start executing the query.

When node 2 and 4 realize that they belongs to the ’act’ alias given in
the query, they send two PARTIAL-SUCCESS messages to the parent node
which is node 3. Since node 3 does not receive any responses from any other
child node it evaluates the query. It realize that it does not belong to any
alias in the query. So only thing it does is forwarding a PARTIAL-SUCCESS
messages to the parent which is node 5 with the information received from
node 2 and 4. When node 1 realize that it belongs to ’sen’ alias of the query,
it sends a PARTIAL-SUCCESS message to the parent node which is node 5.

Node 5 received three PARTIAL-SUCCESS messages and when it eval-
uate them, it realize that now this branch of the network has at least one
node for every alias type in the query. Therefore node 5 checks the alias
types given in the SET block of the UPDATE message and it realize that
node 2 and 4 are the nodes which belongs to that alias type which is ’act’
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alias. Therefore node 5 compose COMMAND messages and issue to the net-
work targeting at node 2 and 4 to perform the actuation tasks. Then node 5
sends a SUCCESS message to its parent node which will propagate through
the network and reach the root node or the base station. By receiving this
message at the base station, it can signal the user that the query is executed
successfully.
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Chapter 4

Experiments and Results

For the purpose of evaluating the suggested solution, we are mainly concerned
on three aspects of proposed query syntax and query execution strategy as
listed below.

1. Applicability.

2. Declarative nature.

3. Performance impact.

For the applicability, our concern is whether the proposed actuation mech-
anism is able to cater for any type of actuation requirement that can occur in
wireless sensor-actuator networks. The declarative nature aspect is the com-
parison of the declarative nature of the proposed syntax in writing queries for
complex actuation tasks. We also evaluate the impact on the performance of
actuation tasks when using the proposed query syntax and execution mecha-
nism. Our prototype developments are designed to support evaluating these
parameters as we explain in the next section.

4.1 Implementation Details

Our evaluation has two implementation requirements. Since we need to eval-
uate our suggested SQL query syntax, we need a prototype with the facility
to write queries and see them work. On the other hand we need to evaluate
our query execution strategy in a large scale with large number of nodes. We
realized that it is better to use two prototype implementations which fulfill
each of these requirements separately. This is because different simulators
and WSN platforms provide different feature and we need to choose best one
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depending on our each requirement. Therefore we have two implementations
one is on Cooja simulator[21] which is used for declarative interface based
evaluations while the second implementation is on GloMoSim[24] simulator
which is used for our query execution strategy evaluations.

4.1.1 Declarative interface

We implemented declarative interface with the support for suggested query
syntax based on TikiriDB[10]. We used TikiriDB source code and added
the UPDATE query support to it. Figure 4.1 shows the high-level system
architecture of TikiriDB. It has three components namely a node application,
a serial forwarder and a client application. Figure 4.2 shows how these com-
ponents look on the Cooja simulator GUI interface. The client application
accepts SQL queries from the user, parses them and forward to the serial
forwarder. The serial forwarder runs on the PC which is connected to the
base station of the WSAN. Its task is to accept the queries which are coming
from the client application and forward them to the WSAN. Each node in
the network runs a copy of the node application which executes the queries
and generates results.

In this prototype we did not implement the query execution strategy.
Instead UPDATE queries are performed in the same way as we perform
an actuation using traditional SELECT queries. When the user issues a
SELECT query, it is parsed and sent to the network. Nodes respond with
data which are provided to the user. When an UPDATE query is issued by
the user, client application first collects the readings of the necessary sensors
and status of necessary actuators. Then it processes those data to identify
the nodes which have to change their actuator status according to the query.
Then client application sends commands for those nodes to update their
actuator status.

4.1.2 Query execution strategy

We implemented query execution strategy on GloMoSim simulator[24]. The
advantage of GloMoSim over Cooja simulator is that GloMoSim comes with
various routing protocols such as AODV, DSR, etc in default and it can be
used to simulate large wireless networks with huge number of nodes. We
implemented a special application for GloMoSim which provides the func-
tionality to send an UPDATE message from a special node to the rest of the
nodes in the network and execute it according to the strategy presented in
the chapter 3.
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Figure 4.1: High-level system architecture of TikiriDB. (1) End user writes
a SQL query and enter to the client application. (2) Client application parse
the query, send it to the serial forwarder, receive the data from serial for-
warder and send back to client application. (3) Serial forwarder exchange
the queries and data between client application and the WSN.

4.2 Evaluation

4.2.1 Applicability

To evaluate the applicability of the new syntax for actuation we consider
mainly three types of actuation scenarios that can occur in a wireless sensor-
actuator network. Those are hybrid sensor-actuator nodes scenario, a pair
of sensor nodes and actuator nodes scenario and multiple sensor nodes and
actuator nodes scenario. Our goal is to show that each of these actuation
scenario can be addressed by the suggested syntax.

Hybrid sensor-actuator node scenario

In this case both sensors and actuators of our concern are in the same node
of the network. For instance, consider the node 2 in the virtual table showed
in Table 3.2. We need to turn its air cooler and sprinkler to ’on’ state if its
temperature reading is greater that 25 and humidity value is lower than 45.
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Figure 4.2: Prototype implementation based on TikiriDB[10] on Contiki
OS[6].

We can perform this actuation by using a query like the one given in
Quary-18.

Query-18

UPDATE sensors

SET air_cooler=’on’, sprinkler=’on’

WHERE nodeid=2 AND

temperature>25 AND humidity<45

ONCE;

A Pair of sensor node and actuator node scenario

The simplest distributed in-network actuation scenario is the involvement
of two nodes where the required sensors are in one node and the required
actuators are in another node. For instance we need to switch off the sprinkler
of node 4 only if the node 1 has a temperature value greater than 20. We
perform this actuation task by using the Query-19.
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Query-19

UPDATE sensors AS sen, sensors AS act

SET act.sprinkler=’off’

WHERE act.nodeid=4 AND

sen.nodeid=1 AND sen.temperature>20

ONCE;

Multiple sensor nodes and actuator nodes scenario

In this case we consider actuation requirements where multiple sensor nodes
and actuator nodes involve in an actuation task. For instance, we need to
switch off sprinkler in node 4 and switch on air cooler in node 2 only if
all the nodes in the network which are having temperature sensors report a
value greater than 25. We perform this actuation task as shown in Query-20.
Since the temperature attribute has to be evaluated on all the nodes in the
network, it is not associated with any alias in the query.

Query-20

UPDATE sensors AS act1,sensors AS act2

SET act1.sprinkler=’off’,

act2.air_cooler=’on’

WHERE act1.nodeid=4 AND

act2.nodeid=2 AND

temperature>25

ONCE;

4.2.2 Declarative nature

Moreover we evaluated the declarative nature of the suggested syntax over
the existing syntax by a user survey. We randomly selected a group of 10
students who have an average knowledge on acquisitional queries and we pro-
vided them with different actuation scenarios. We asked them to write SQL
queries to perform those actuation tasks in both existing and the suggested
approaches. Finally we collected feedback from them regarding how they
found writing queries for actuation tasks in both approaches.

It turned out that each person participated in the survey considers the
existing approach of performing actuation tasks has unnecessary syntax re-
strictions. All the participants consider the modified virtual table with actu-
ators as attributes is more convenient to handle than the old table. As such
they have mentioned that UPDATE queries can be easily written to perform
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(sensors/actuators) in the query.

actuation tasks naturally without using artificially forced syntax parts of SE-
LECT queries in existing approach. We further noticed that most of them
have struggled to write queries using the existing syntax for the greenhouse
scenario given in chapter 1 whilst they have written with a single query for
the same scenario as given in Query-21 using the proposed syntax.

Query-21

UPDATE sensors AS sen,sensors AS act1,

sensors AS act2,sensors AS act3

SET act1.air_cooler=’on’,

act2.screen_ctrl=’on’,

act3.sprinkler=’on’

WHERE (sen.nodeid=5 OR sen.nodeid=7)

AND

sen.temperature>35 AND sen.humidity>45

AND

act1.nodeid=9 AND act2.nodeid=15 AND

act3.nodeid=23

ONCE;
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4.2.3 Performance impact

Actuation time

We collected the data of the time to perform an actuation against different
number of attribute fields in the query using the Cooja simulator based pro-
totype. For this purpose we considered various actuation scenarios which in-
volve different number of attributes in the virtual table. With respect to these
scenarios we used queries from both existing and suggested approaches. Fig-
ure 4.3 shows the time to perform an actuation against the number of sensor
/ actuator attributes involved in the actuation task. According to this graph
theres a significant performance difference between the two approaches since
traditional approach requires human intervention to issue multiple queries to
perform an actuation task while new syntax eliminate multiple query usage.

We evaluated the actuation time variation with different number of nodes
in the network using our GloMoSim simulator based prototype implementa-
tion to find whether any improvement has been achieved by the UPDATE
query execution strategy. For this evaluation we excluded the time delay
which gets introduced to the execution time by the human intervention to
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run multiple SELECT queries. Figure 4.4 shows the results of this evaluation.
According to this graph, the UPDATE query based actuation out performs
the SELECT query based actuation. Since the human intervention delay is
excluded from the data, this graph clearly shows that the UPDATE query
execution protocol has contributed to improve the actuation performance.

Communication cost

We used the same GloMoSim based prototype and collected the number of
messages passed between nodes to perform an actuation against the num-
ber of available nodes in the network. As the figure 4.5 shows the number
of messages passed between the nodes is considerably lower when UPDATE
queries are used to perform actuation tasks with the aid of our new execu-
tion strategy. Since the number of messages used in UPDATE query based
actuation is lower than SELECT query based actuation, the battery power
cost for communication can be assumed to be lower in UPDATE query based
actuation than SELECT query based actuation.
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Chapter 5

Discussion

In the chapter 4 we looked at different aspects of our proposed solution to the
issues we identified in the declarative interface. Our prototype implementa-
tions were specifically designed to meet the requirements of the evaluation
parameters and scenarios. Some aspects were evaluated using end-user sur-
veys and example based analysis while other parameters were evaluated using
prototype based experiments.

According to the user survey, performing actuation tasks with an UP-
DATE query is more convenient than using SELECT queries with low level
function calls. The declarative nature of UPDATE syntax makes it easy
to express complex actuation tasks within a single query when compared to
the traditional approach where multiple queries may have to involve with
system dependent function calls. Since the enhanced virtual table contains
actuators as attributes, the user gets the opportunity to easily find out the
current status of actuators in any given time. This also enables the user to
perform in-network actuation tasks not only based on sensor values but also
based on current actuator status.

As we have shown, UPDATE query syntax can be used to perform al-
most any complex actuation requirement that can arise in a wireless sensor
actuator network(WSAN). The syntactic support along with the aliases can
be used to coordinate multiple nodes with sensors and actuators by writing
a single UPDATE query. Comparing to the traditional approach, this single
query usage to perform an actuation has improved the performance since
multiple queries take more time to execute with the additional time taken by
human involvement. This enables the WSAN to respond quickly for changes
in the environment.

Even though it appears like having NULL values in the virtual data ta-
ble where some sensors or actuators are absent on a particular node as a
drawback, it does not introduce any performance impact. When a node re-
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ceives a query asking for some sensor / actuator attribute value which is
not available on the node, the node sends only the values of the attributes
which are available on the node. A Node does not send any messages to the
client application to inform that the value of a particular sensor / actuator
attribute is NULL. It’s the client application which assigns a NULL value
to each nodes data set where data is absent when arrive at the base station.
Because of this reason, having lot of NULL values in the virtual data table
does not represent any communication or any other resource overhead on
the network. To state that more formally, the heterogeneity of nodes in the
network does not introduce any overhead to the network.

Our query execution strategy has several drawbacks by its design. When
executing a query we assume that a tree based message routing mechanism
is available on the network which is rooted at the base station. This tree can
be an overlay to a low level routing protocol. We did not evaluated the cost
of building a tree where the bases station of the network becomes the root.
However it is quite fair to ignore this cost because once the tree is built,
the network does not need to rebuild the tree throughout its operational
life time unless some sub-root nodes fail due to hardware/software failure
making some branches of the network inaccessible from the base station.
At this point, another important assumption plays a major role. We are
considering a static network where the nodes does not move. Therefore node
mobility has no way to effect the initiated message routing tree. Again this
assumption is much fair to make since the node mobility requirement is less
likely to happen in a wireless sensor-actuator network where nodes might
have fixed into non-moving devices in the physical world. A good example is
the green house application we explained in the chapter 1 where sprinklers,
screen controllers and air coolers are not supposed to move.
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Chapter 6

Conclusions

In this dissertation we presented a solution addressed to a problem in the
declarative interface of wireless sensor-actuator networks. This problem has
two aspects. First thing is current declarative interface for actuation violates
the declarative nature of SQL queries making the database abstraction use-
less. Secondly when used in distributed in-network actuation tasks, current
actuation queries are highly inefficient due to the multiple query usage for a
single actuation task.

On addressing these issues we made enhancements to the existing virtual
database table and introduced new actuation query syntax to the declarative
interface facilitating to perform actuation tasks in a more declarative way.
To solve the inefficiency of performing actuation tasks we introduced a new
execution strategy for our proposed query syntax. Our evaluations show
that in this new way of performing actuation tasks, queries can be easily
written and actuation tasks are performed in less time when compared with
the traditional approach. Additionally the resource usage of the network in
terms of the number of messages exchanged is lesser in this new strategy
than the traditional method. However the support for mobility of sensors
and actuators in the network in the proposed query execution strategy is left
as a future work.
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