
Electromagnetic Side-Channel Analysis Methods for
Digital Forensics on Internet of Things

Asanka P. Sayakkara

UCD Student Number: 16211801

A thesis submitted to University College Dublin
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

School of Computer Science

Head of School: Associate Professor Chris Bleakley

Primary Supervisor: Assistant Professor Nhien-An Le-Khac

Co-Supervisor: Assistant Professor Mark Scanlon

September – 2020

i

Abstract

Modern legal and corporate investigations heavily rely on the field of digital

forensics to uncover vital evidence. The dawn of the Internet of Things (IoT)

devices has expanded this horizon by providing new kinds of evidence sources

that were not available in traditional digital forensics. However, unlike desktop

and laptop computers, the bespoke hardware and software employed on most

IoT devices obstructs the use of classical digital forensic evidence acquisi-

tion methods. This situation demands alternative approaches to forensically

inspect IoT devices.

Electromagnetic Side-Channel Analysis (EM-SCA) is a branch in infor-

mation security that exploits Electromagnetic (EM) radiation of computers to

eavesdrop and exfiltrate sensitive information. A multitude of EM-SCA meth-

ods have been demonstrated to be effective in attacking computing systems

under various circumstances. The objective of this thesis is to explore the po-

tential of leveraging EM-SCA as a forensic evidence acquisition method for IoT

devices. Towards this objective, this thesis formulates a model for IoT forensics

that uses EM-SCA methods. The design of the proposed model enables the

investigators to perform complex forensic insight-gathering procedures without

having expertise in the field of EM-SCA. In order to demonstrate the function of

the proposed model, a proof-of-concept was implemented as an open-source

software framework called EMvidence. This framework utilises a modular ar-

ii

chitecture following a Unix philosophy ; where each module is kept minimalist

and focused on extracting a specific forensic insight from a specific IoT device.

By doing so, the burden of dealing with the diversity of the IoT ecosystem is

distributed from a central point into individual modules.

Under the proposed model, this thesis presents the design, the implemen-

tation, and the evaluation of a collection of methods that can be used to acquire

forensic insights from IoT devices using their EM radiation patterns. These

forensic insights include detecting cryptography-related events, firmware ver-

sion, malicious modifications to the firmware, and internal forensic state of

the IoT devices. The designed methods utilise supervised Machine Learning

(ML) algorithms at their core to automatically identify known patterns of EM

radiation with over 90% accuracy.

In practice, the forensic inspection of IoT devices using EM-SCA methods

may often be conducted during triage examination phase using moderately-

resourced computers, such as laptops carried by the investigators. However,

the scale of the EM data generation with fast sample rates and the dimen-

sionality of EM data due to large bandwidths necessitate rich computational

resources to process EM datasets. This thesis explores two approaches to re-

duce such overheads. Firstly, a careful reduction of the sample rate is found to

be reducing the generated EM data up to 80%. Secondly, an intelligent chan-

nel selection method is presented that drastically reduces the dimensionality

of EM data by selecting 500 dimensions out of 20,000.

The findings of this thesis paves the way to the noninvasive forensic insight

acquisition from IoT devices. With IoT systems increasingly blending into the

day-to-day life, the proposed methodology has the potential to become the life-

line of future digital forensic investigations. A multitude of research directions

are outlined, which can strengthen this novel approach in the future.

iii

To my mother, father, and Upeksha for everything.

iv

Acknowledgements

I would like to thank my supervisor Dr. Nhien-An Le-Khac and co-supervisor

Dr. Mark Scanlon for giving me this priceless opportunity and guiding me

throughout this journey for the last few years. It has been a pleasure to work

with them all this time and they have helped me to become a better researcher.

I would also like to thank Dr. Catherine Mooney for serving as the chair of my

Research Studies Panel (RSP) and for her invaluable comments that helped

me to improve my work. I thank UCD for funding my PhD studies.

Working and studying at UCD was always enjoyable due to my friends

who occupied the room A0.12 in computer science building. I thank all of

them for keeping me accompanied. Among them, I especially thank Hamed

Jahromi and Saad Alabdulsalam for always being there for me and for all the

conversations we had about research, life, and everything else.

I would like to acknowledge the support I received from my colleagues Xi-

aoyu Du, Aikaterini Kanta, and Felix Anda from UCD Forensics and Security

Research Group. They spent their time to help me improve my communication

skills every time I was preparing for a presentation. I also thank my collabo-

rators Luis Miralles-Pechuán and Quan Le from the Centre for Applied Data

Analytics Research (CeADAR), UCD. Their expertise and guidance immensely

broadened my knowledge and helped me to improve my work.

Leaving one’s homeland and spending a few years abroad doing full-time

research is never an easy task without the help of one’s family. I would like

to thank my wife, Upeksha, for loving me unconditionally and for forgiving me

for my absent-mindedness. I also thank my parents and two brothers for their

kindness and care.

v

Contents

Abstract ii

Acknowledgements v

Contents vi

List of Figures xii

List of Tables xvii

List of Publications xix

1 Introduction 1

1.1 Motivation . 3

1.2 Research Problem . 4

1.2.1 Extraction of Forensic Insights through Electromagnetic

Side-Channel Analysis 4

1.2.2 Efficiency of Electromagnetic Side-Channel Analysis

Methods . 5

1.2.3 Management of the Diversity and Dynamism of Internet

of Things Ecosystem 5

1.3 Thesis Approach . 6

vi

1.3.1 Designing and Implementing a Methodology as the EMv-

idence Framework . 6

1.3.2 Designing and Evaluating Machine Learning-based

Methods in the EMvidence Framework 7

1.3.3 Designing and Evaluating Methods to Increase the Effi-

ciency of the EMvidence Framework 7

1.4 Contributions . 7

1.5 Limitations . 8

1.6 Thesis Organisation . 9

2 Technical Background 10

2.1 Internet of Things . 10

2.2 Digital Forensics . 12

2.2.1 Digital Investigation Process 12

2.2.2 Forensics of Internet of Things Devices 13

2.2.3 Encrypted Devices . 14

2.3 Digital Signal Processing . 15

2.3.1 The Nature of a Signal 15

2.3.2 Analog and Digital Signals 16

2.3.3 Time and Frequency Domains 17

2.3.4 The Visualisation of Signals 19

2.3.5 Tools and Libraries . 19

2.4 Software-defined Radio . 20

2.4.1 Software-defined Radio Architecture 20

2.4.2 Software-defined Radio Hardware Tools 21

2.4.3 Software-defined Radio Software Tools 23

2.4.4 The Nature of Software-defined Radio Data 24

2.5 Electromagnetic Side-Channel Radiation 25

vii

2.5.1 Sources of Electromagnetic Side-Channels 25

2.5.2 Observation of Electromagnetic Side-Channels 26

2.5.3 Leakage of Critical Information 28

2.6 Machine Learning . 29

3 Related Work 31

3.1 Side-Channel Attacks . 31

3.2 Unintentional Electromagnetic Radiation 34

3.2.1 Hardware that Causes Electromagnetic Radiation 34

3.2.2 Sampling Electromagnetic Radiation 35

3.2.3 The Connection between Instructions and Electromag-

netic Radiation . 36

3.3 Electromagnetic Radiation as a Signature 37

3.3.1 Electromagnetic Radiation as a Hardware Signature . . 37

3.3.2 Electromagnetic Radiation as a Software Signature . . . 38

3.4 Electromagnetic Radiation that Leak Information 41

3.4.1 Observable Electromagnetic Spectrum Patterns 41

3.4.2 Differential Electromagnetic Analysis 42

3.4.3 Analysis of Wireless-powered Devices 45

3.4.4 Countermeasures to Electromagnetic Side-Channel

Analysis . 47

3.5 Standards and Tools . 48

3.6 Current Direction . 49

3.6.1 Frequent Cryptographic Operations 50

3.6.2 Combined Side-Channel Attacks 50

3.6.3 File Signatures . 51

3.6.4 Packet Analysis of Network Devices 52

3.6.5 Easy Access to Electromagnetic Spectrum 53

viii

3.6.6 Backscatter Channels 54

3.6.7 Advancements in Machine Learning 54

4 Methodology: The Birth of EMvidence 56

4.1 Introduction . 56

4.2 A Case Study Scenario . 57

4.3 A Forensic Model for Internet of Things 61

4.3.1 Identification of Requirements 62

4.3.2 Planning for Data Acquisition and Analysis 62

4.3.3 Building New Analysis Methods 63

4.3.4 Acquiring Electromagnetic Data 63

4.3.5 Executing Electromagnetic Side-Channel Analysis . . . 63

4.3.6 Reporting Results . 64

4.3.7 Overall Workflow . 65

4.4 The EMvidence Framework . 65

4.4.1 Data Acquisition Component 67

4.4.2 Report Generation Component 67

4.4.3 EMvidence Core . 68

4.4.4 Implementation Details 68

4.5 Plug-ins for EMvidence . 71

4.5.1 Plug-in Behaviour . 71

4.5.2 Plug-in Development 73

4.6 Procedure for Data Acquisition 76

4.6.1 Representative Internet of Things Devices 76

4.6.2 Determining Data Acquisition Parameters 77

4.7 Experimental Plan . 81

4.7.1 Designing Methods to Acquire Forensic Insights 81

4.7.2 Designing Methods to Increase Efficiency 81

ix

5 Insights from Waves: Machine Learning Methods for EMvidence 82

5.1 Introduction . 82

5.2 Considerations for Experiments 83

5.2.1 Types of Useful Insights 84

5.2.2 Machine Learning Algorithms 85

5.2.3 Preprocessing Procedure 86

5.3 Experimental Evaluation . 87

5.3.1 The Cryptographic Activities of High-end Internet of

Things Devices . 87

5.3.2 The Cryptographic Activities of Low-end Internet of

Things Devices . 92

5.3.3 Firmware Version of Internet of Things Devices 95

5.3.4 Malicious Modifications to the Firmware of Internet of

Things . 100

5.3.5 Current Behavioural State of an Internet of Things Device 101

5.4 Discussion . 104

6 Curse of Dimensionality: Increasing the Efficiency of EMvidence 105

6.1 Introduction . 105

6.2 Considerations for Experiments 106

6.3 Approach 1: Minimising Data Production 107

6.3.1 Electromagnetic Data Processing Overhead 107

6.3.2 Electromagnetic Data Storage Overhead 109

6.3.3 Electromagnetic Data Transmission Overhead 111

6.4 Approach 2: Selecting Useful Channels 112

6.4.1 Procedure of Experiments 115

6.4.2 Using 20,000 Channels 118

6.4.3 Principal Component Analysis 120

x

6.4.4 Channel Selection Based on the Variance 121

6.4.5 Channel Selection based on the Average 122

6.4.6 Applying Average per Class and Variance between the

Classes . 123

6.4.7 Applying Recursive Feature Elimination 124

6.4.8 Using a Time Window of 50 Timestamps 127

6.4.9 Summary of the Channel Selection Methods 128

6.5 Discussion . 129

7 Conclusion & Future Work 131

7.1 Conclusion . 131

7.1.1 Implications of This Work 133

7.1.1 Future of Digital Forensics 133

7.1.2 Legal Acceptability 133

7.1.3 Platform for New Research 133

7.2 Future Work . 134

7.2.1 Evaluation of Commonly-used Internet of Things 134

7.2.2 Interoperability between Evidence Sources 134

7.2.3 Management of Electromagnetic Data 135

7.2.4 Hardware Independence of Machine Learning Models . 135

7.2.5 Cryptographic Key Retrieval in Forensic Context 136

Bibliography 137

Appendices 160

A List of Abbreviations 160

B EMvidence User Documentation 165

xi

List of Figures

1.1 The challenge of IoT forensics. 2

1.2 Application of EM-SCA for forensic inspection of IoT devices. . 3

1.3 The order of addressing research questions and the planned

approach to address each question. 6

2.1 Components of an IoT device and a typical IoT network archi-

tecture. 11

2.2 Properties of a periodic signal. 16

2.3 Visualisation of a signal as waveform, power spectral density

(PSD), and spectrogram. 18

2.4 The architecture of a software defined radio (SDR) platform. . . 20

2.5 RTL-SDR and HackRF One devices with their default antennas. 21

2.6 Near field antennas of varying diameters and lengths along with

a semi-rigid RF cable. 22

2.7 GQRX SDR software capturing and visualising EM data from a

connected HackRF One device. 23

2.8 Representation of an SDR data sample in polar and Cartesian

coordinate systems. 24

2.9 Hardware setup to observe EM radiation from an Arduino device

blinking an LED. 27

xii

2.10 Spectrograms of AM demodulated EM radiation acquired from

an Arduino device. In (a) and (c), the device is running two

unique programs, while (b) depicts the transition period. 28

3.1 The RF-DNA fingerprinting process. 40

3.2 EM analysis of XOR-Cipher algorithm to extract the encryption

key. 43

4.1 State machine of the IoT fire warning system’s firmware. 58

4.2 Reasoning with the information of IoT device firmware internal

state. 60

4.3 A forensic model for IoT forensics using EM-SCA methods. . . 61

4.4 A potential investigative workflow that follows the proposed

forensic model. 64

4.5 Major functional components of the EMvidence framework and

their involvement in the workflow of analysing an IoT device. . . 66

4.6 The output on the Bash terminal when running EMvidence. . . 69

4.7 Analysing an EM trace using the EMvidence. 70

4.8 A report generated by EMvidence after analysing EM data from

a device. 71

4.9 A plug-in being called by the EMvidence framework’s core. . . . 72

4.10 Instrumented and controlled EM signal acquisition. 73

4.11 The workflow of creating a plug-in for EMvidence. 75

4.12 Arduino and Raspberry Pi devices with H-loop antennas. 77

4.13 Leakage signals of two representative IoT devices – (a) Rasp-

berry Pi 3 B+ at 1.4 GHz and (b) Arduino Leonardo at 288 MHz

(18th harmonic). 78

xiii

4.14 PSD of the EM radiation when running Bubble sort algorithm

with two different antenna positions on Arduino. 79

5.1 Waveform of the AM demodulated signal at the CPU clock fre-

quency of Raspberry Pi. The AM modulated signal represents

the AES encryption performed on the device. Sudden higher

peaks are an external interference signal coming from an un-

known source. (The three sub-figures depict three zoomed-in

scales of the same signal.) . 87

5.2 The EM trace acquisition and preprocessing stages in order to

classify cryptographic activities using an ML model. 88

5.3 Sample Fourier Transform vectors of cryptographic algorithms

that run on Raspberry Pi. 90

5.4 The time it takes to digitally sign and verify a message using

different ECC curves on an Arduino device. 93

5.5 Example ECC and non-ECC signals acquired from Arduino de-

vice. 94

5.6 Variation of classification accuracy against sliding window

length and EM trace length. 95

5.7 Power spectral density (PSD) of the EM radiation from four dif-

ferent Arduino programs that were used for classification. . . . 97

5.8 Confusion matrix of the neural network classifier to detect ten

different Arduino programs, which are labelled from 0 to 9. . . . 98

5.9 Confusion matrix of the neural network classifier to detect

twenty different Arduino programs, which are labelled from 0

to 19. 99

5.10 The PSD plots of the IoT device’s EM signal at different device

states. 102

xiv

5.11 Confusion matrix of the IoT device state classifier. 103

6.1 The two experimental approaches to increase the efficiency of

gathering forensic insights. 106

6.2 The variation of the number of sliding windows produced

against the sliding window step size. 108

6.3 The effect of EM trace sample rate to the signal classification

accuracy when used with 4 class classifier to identify four differ-

ent Arduino programs. 110

6.4 The variation of EM data processing overhead against sample

rate when used with 4 class classifier to identify four different

Arduino programs. 111

6.5 Spectrogram of the observed EM signal from DUT 113

6.6 Waveform of some randomly selected channels of the EM dataset.114

6.7 The workflow to generate EM traces, identify channels, and fi-

nally perform EM-SCA with selected channels. 115

6.8 The series of methods explored for channel selection. 117

6.9 The confusion matrix of classifying programs using all the chan-

nels. 119

6.10 Variance (y-axis) of the top 100 eigenvalues (x-values) when

applying principal component analysis. 119

6.11 The variance (y-axis) of the 20,000 channels (x-axis). The limit

of y-axis is set to 10-13 in order to visualise lower values. How-

ever, the variance of 5th and 6th channels are 0.000282 and

0.000222 respectively. 121

6.12 Average (y-axis) for each of the 20,000 channels (x-axis). . . . 122

6.13 Variance between the average of each of the classes for all the

channels. 124

xv

6.14 The optimal number of features (model with highest perfor-

mance) for the RFE algorithm is 81 (marked with a red dot). . . 125

6.15 The confusion matrix for the 10 Activities and 81 features, i.e.,

the optimal number for RFE. 126

6.16 Summary of the experimental results with different techniques. 129

B.1 Login window of the EMvidence framework. 166

B.2 Dashboard interface of the EMvidence framework. 167

B.3 The interface for uploading EM data into EMvidence framework. 168

B.4 The interface for capturing EM data using the EMvidence frame-

work. 169

B.5 The interface for analysing EM data using plug-ins on the EMv-

idence framework. 170

B.6 Settings interface of the EMvidence framework. 171

xvi

List of Tables

5.1 Classification accuracy of cryptographic algorithms. 91

5.2 Private and public key sizes of ECC curves. 92

6.1 Average accuracy per class using the entire 20,000 channels. . 118

6.2 Average accuracy per class for the best 100 PCA components. 120

6.3 Average accuracy per class of the highest 103 channels ordered

by variance. 122

6.4 Average accuracy per class of the highest 100 channels ordered

by average. 123

6.5 Average accuracy per class after calculating the variance be-

tween the average per activity. 125

6.6 Average accuracy per class of the selected 81 channels by RFE. 127

6.7 Result of the experiments when applying a time window of 50

samples. 128

xvii

Declaration of Authorship

I hereby certify that the submitted work is my own work, was completed while

registered as a candidate for the degree of doctor of philosophy, and I have

not obtained a degree elsewhere on the basis of the research presented in

this submitted work.

Asanka Sayakkara

(Student Number: 16211801)

Date

xviii

List of Publications

Journal Papers

• Sayakkara, A., Le-Khac, N-A., & Scanlon, M. (2020). Facilitating Elec-

tromagnetic Side-Channel Analysis for IoT Investigation: Evaluating the

EMvidence Framework. Forensic Science International: Digital Investi-

gation. (DFRWS Virtual USA, July 2020)

• Sayakkara, A., Miralles, L., Le-Khac, N-A., & Scanlon, M. (2020). Cutting

through the Emissions: Feature Selection from Electromagnetic Side-

Channel Data for Activity Detection. Forensic Science International:

Digital Investigation. DOI: https://doi.org/10.1016/j.fsidi.2020.

300927 (DFRWS Virtual EU, March 2020 - Best Student Paper Award)

• Sayakkara, A., Le-Khac, N-A., & Scanlon, M. (2020). EMvidence: A

Framework for Digital Evidence Acquisition from IoT Devices through

Electromagnetic Side-Channel Analysis. Forensic Science International:

Digital Investigation. DOI: https://doi.org/10.1016/j.fsidi.2020.

300907 (DFRWS Virtual EU, March 2020 - Best Poster Award)

• Sayakkara, A., Le-Khac, N-A., & Scanlon, M. (2019). Leveraging

Electromagnetic Side-Channel Analysis for the Investigation of IoT De-

vices. Digital Investigation, Elsevier. DOI: https://doi.org/10.1016/

j.diin.2019.04.012 (DFRWS, Portland, OR, USA, July 2019 - Best

Student Paper Award)

• Sayakkara, A., Le-Khac, N-A., & Scanlon, M. (2019). A Survey of

Electromagnetic Side-Channel Attacks and Discussion on their Case-

Progressing Potential for Digital Forensics. Digital Investigation, Else-

vier. DOI: https://doi.org/10.1016/j.diin.2019.03.002

xix

https://doi.org/10.1016/j.fsidi.2020.300927
https://doi.org/10.1016/j.fsidi.2020.300927
https://doi.org/10.1016/j.fsidi.2020.300907
https://doi.org/10.1016/j.fsidi.2020.300907
https://doi.org/10.1016/j.diin.2019.04.012
https://doi.org/10.1016/j.diin.2019.04.012
https://doi.org/10.1016/j.diin.2019.03.002

Conference Papers

• Du, X., Hargreaves, C., Sheppard, J., Anda, F., Sayakkara, A., Le-Khac,

N-A., & Scanlon, M. (2020), SoK: Exploring the State of the Art and

the Future Potential of Artificial Intelligence in Digital Forensic Investiga-

tion, 13th International Workshop on Digital Forensics (WSDF), held at

the 15th International Conference on Availability, Reliability and Secu-

rity (ARES), Virtual Event. DOI: https://doi.org/10.1145/3407023.

3407068

• Sayakkara, A., Le-Khac, N-A., & Scanlon, M. (2018). Accuracy En-

hancement of Electromagnetic Side-channel Attacks on Computer Mon-

itors. The 2nd International Workshop on Criminal Use of Information

Hiding (CUING), held at the 13th International Conference on Availabil-

ity, Reliability and Security (ARES), Hamburg, Germany. DOI: https:

//dx.doi.org/10.1145/3230833.3234690

• Sayakkara, A., Le-Khac, N-A., & Scanlon, M. (2018). Electromagnetic

Side-Channel Attacks: Potential for Progressing Hindered Digital Foren-

sic Analysis. International Workshop on Speculative Side Channel Anal-

ysis (WoSSCA 2018), held as part of the 32nd European Conference

on Object-Oriented Programming (ECOOP) and the 27th International

Symposium on Software Testing and Analysis (ISSTA), Amsterdam,

Netherlands. DOI: https://dx.doi.org/10.1145/3236454.3236512

Poster Abstracts

• Sayakkara, A., Le-Khac, N-A., & Scanlon, M. (2018). Leveraging Elec-

tromagnetic Side-Channel Attacks for Digital Forensics. 32nd European

xx

https://doi.org/10.1145/3407023.3407068
https://doi.org/10.1145/3407023.3407068
https://dx.doi.org/10.1145/3230833.3234690
https://dx.doi.org/10.1145/3230833.3234690
https://dx.doi.org/10.1145/3236454.3236512

Conference on Object-Oriented Programming (ECOOP) and the 27th In-

ternational Symposium on Software Testing and Analysis (ISSTA), Ams-

terdam, Netherlands. (Best Poster Award, UCD CS PhD Event, Decem-

ber 2018).

Doctoral Symposiums

• Sayakkara, A., Le-Khac, N-A., & Scanlon, M. (2018). Leveraging Elec-

tromagnetic Side-Channel Attacks for Digital Forensics. Doctoral Sym-

posium held as part of the 32nd European Conference on Object-

Oriented Programming (ECOOP) and the 27th International Symposium

on Software Testing and Analysis (ISSTA), Amsterdam, Netherlands.

xxi

Chapter 1

Introduction

In the field of digital forensics, legal and corporate investigators seek to un-

cover mysteries using digital sources of evidence. People interact with com-

puting devices while conducting their day-to-day business that leaves unin-

tentional traces of their activities. Such sources of forensic evidence include

computer hard disks, network activity logs, removable media, the internal stor-

age of mobile phones and many others [1, 2]. When extracting digital evidence

from computing devices, the investigators follow well-established procedures

in order to ensure their court-admissibility [3]. A piece of evidence extracted

from a device without following standard practices can be challenged in a court

of law and consequently be rendered useless to support the investigation [4].

The latest addition to digital forensic evidence sources are Internet of

Things (IoT) devices. IoT ecosystem includes a wide variety of devices such

as smart-watches, smart TVs, CCTV cameras, medical implants, fitness wear-

ables, etc. [5] With the increasing prevalence of IoT devices in everyday life, it

is inevitable to find them in modern crime scenes and digital forensic investiga-

tions. For instance, a medical implant, such as a pacemaker, can provide hints

in an investigation about a person of interest’s physical exertion or stress intro-

duced elevation of heart rate. A fitness wearable, such as a Fitbit, can provide

a vital piece of information about the presence and movements of a person in

a crime scene. A smart voice assistant device, such as an Amazon Alexa, can

provide a vital information about the time its owner came home [6, 7, 8].

1

Figure 1.1: The challenge of IoT forensics.

Forensic evidence related to IoT devices is usually found on three different

sources: cloud servers, smart mobile phones, and the IoT devices themselves

(see Figure 1.1) [9]. Among them, the two former sources are the focus of

cloud and mobile forensics domains respectively with developed and reliable

methods. In contrast, direct forensic inspection of IoT devices is challeng-

ing due to multiple factors. Most IoT products use bespoke hardware and

firmware that makes forensic evidence acquisition with classical methods im-

possible [10]. This situation has lead to the use of invasive techniques, such

as physically removing storage chips and inspecting with the Scanning Elec-

tron Microscopes (SEM) [11, 12, 13]. The using of invasive methods poses

a risk of damaging devices to unrecoverable extents. Furthermore, the vast

diversity of IoT products in use and the frequent arrival of new products into

the market further complicates the use of such invasive methods [14, 15].

This thesis aims to address this challenge of IoT forensics by identifying a

novel methodology to directly inspect IoT devices in a non-invasive manner.

2

1.1. MOTIVATION

Investigative
Scenario Device

Identification

EM Side-Channel
Analysis

Acquire Data using
Classical Methods

Archive and
Storage

Classical Methods
Applicable?

Yes

No

Court-Admissible
Evidence

Court-Admissible
Evidence

Useful Insights for
Further Investigation

Figure 1.2: Application of EM-SCA for forensic inspection of IoT devices.

1.1 Motivation

Side-channel analysis has been proven to be effective against many secu-

rity mechanisms on computing systems [16]. Among various side-channel at-

tacks, Electromagnetic Side-Channel Analysis (EM-SCA) is an important class

of attacks that exploits the unintentional Electromagnetic (EM) radiation from

computers [17, 18, 19]. Using EM-SCA, sensitive information, such as cryp-

tographic keys, have been exfiltrated from computers and IoT devices are no

exception. When an investigator encounters IoT devices during a forensic

investigation, it should be determined whether the device can be inspected

using classical forensic approach, i.e., copying of the volatile and non-volatile

storage and inspecting in a forensically-sound manner. The IoT devices that

do not meet this condition, require an alternative approach.

This research proposes EM-SCA as an alternative approach for IoT foren-

sics (see Figure 1.2). Due to the nature of EM-SCA, it is indeed a non-invasive

approach to deal with IoT forensics. However, EM-SCA has its own limitations

in the forensic context. Each EM-SCA method that has been published in the

literature is tailor-made for acquiring a specific kind of information from a spe-

cific type of device. Equally, EM-SCA is only applicable when an IoT device

is up and running during the inspection. Therefore, the practical application of

EM-SCA for IoT forensics demands a large collection of tailor-made EM-SCA

3

1.2. RESEARCH PROBLEM

methods at the disposal of an investigator, which should be applied as soon

as a device is found in order to extract information that are most relevant to the

case in hand.

Performance of such a complex procedure is currently impossible for digital

forensic investigators. As a result, a need arises to introduce a methodology

that enable successful application of EM-SCA for IoT forensics.

1.2 Research Problem

The research presented in this thesis seeks to uncover a methodology that

enables the application of EM-SCA to extract forensic insights from IoT devices

in digital investigation context. Towards addressing this problem, the following

three questions were defined and pursued in this thesis.

1.2.1 Extraction of Forensic Insights through Electromag-

netic Side-Channel Analysis

When performing EM-SCA to eavesdrop on computers, a multitude of ap-

proaches can be taken. It is necessary to identify methods that are effective at

extracting forensic insights from IoT devices at various investigative scenarios.

Research Question 1:

What methods are effective at extracting forensic insights from IoT

through EM-SCA?

Hypothesis: EM radiation of IoT devices leak sufficient information to pro-

vide forensic insight about their internal behaviour. It is possible to design and

implement EM-SCA methods to extract such information in order to be used in

digital investigation scenarios.

4

1.2. RESEARCH PROBLEM

1.2.2 Efficiency of Electromagnetic Side-Channel Analysis

Methods

When applying EM-SCA methods for the forensic inspection of IoT devices,

they need to be performed within a reasonable time using reasonable amount

of computational resources. The fact that EM data are both large in size and

wide in dimensionality has a negative impact on this regard.

Research Question 2:

What approaches can increase the efficiency of the EM-SCA methods

for forensic inspection of IoT?

Hypothesis: Although EM data are highly dimensional and large in size, it

is possible to design and implement methods that can increase the efficiency

of handling EM data. With such methods, it is possible to acquire forensic ev-

idence from IoT devices in the field by forensic investigators with moderately-

resourced computers.

1.2.3 Management of the Diversity and Dynamism of Inter-

net of Things Ecosystem

The precise EM-SCA method, which should be used in a particular scenario,

depends on the IoT device in question and the type of information being pur-

sued. Therefore, it is necessary to define a methodology that enables effective

management of individual EM-SCA methods in the forensic context.

Research Question 3:

What methodology can be used to manage the diversity and dynamism

of IoT ecosystem when leveraging EM-SCA to acquire forensic insights?

Hypothesis: It is possible to design a unified methodology to perform EM-

SCA in forensic investigation context, regardless of the specific IoT device or

the specific forensic insight being extracted. Such a methodology can abstract

5

1.3. THESIS APPROACH

RQ-3:
Diversity & Dynamism

of IoT Ecosystem

RQ-1:
Uncovering Forensic

Insights

RQ-2:
Increasing Efficiency of

Insight Gathering

Designing &
Implementing a

Methodology that is
Resilient to Rapid

Changes.

Designing &
Evaluating Machine

Learning-based
Forensic Insight-

gathering Methods.

Designing &
Evaluating Methods

to Increase
Efficiency of

Forensic Insight-
gathering.

Figure 1.3: The order of addressing research questions and the planned approach to
address each question.

out the rapid changes of the IoT ecosystem, enabling forensic investigators to

perform EM-SCA seamlessly.

1.3 Thesis Approach

The first two research questions demand the discovery of methods that can

be applied to specific types of IoT devices or scenarios. However, the prac-

tical usability of these methods depends on a successful answer to the latter

question. Therefore, this thesis takes on the third research question as the

entry point, which is followed by the first and the second research questions.

Figure 1.3 illustrates this order of approaching research questions.

1.3.1 Designing and Implementing a Methodology as the

EMvidence Framework

In order to address the third research question, a methodology was developed

that distributes the complexity of dealing with diverse EM-SCA methods for

gathering forensic insights. This methodology is inspired by the Unix philos-

6

1.4. CONTRIBUTIONS

ophy [20] of designing systems. A proof-of-concept of the proposed method-

ology is developed as an open-source software framework called EMvidence.

This implementation is subsequently used as a platform to work towards an-

swering the other two research questions.

1.3.2 Designing and Evaluating Machine Learning-based

Methods in the EMvidence Framework

When applying EM-SCA to acquire forensic insights from IoT devices in inves-

tigative context, the process should require as minimum human intervention

as possible. This is to say that analysis results should not depend on the

theoretical or technical expertise of the investigators. In order to meet this re-

quirement, the methodology proposed as part of this work defines the scope

of exploring EM-SCA methods that use Machine Learning (ML) techniques. A

collection of ML-based EM-SCA methods were designed for this purpose and

implemented using the EMvidence framework for evaluation.

1.3.3 Designing and Evaluating Methods to Increase the Ef-

ficiency of the EMvidence Framework

Towards the goal of increasing efficiency of EM-SCA methods in practical in-

vestigative scenarios, two potential avenues were experimentally explored.

The first is the potential of reducing the amount of EM data production by reg-

ulating sample rate as far as it does not negatively affect the functionality and

accuracy of EM-SCA methods. The second is the potential to automatically

identify the information-leaking channels from a wide band of EM data.

1.4 Contributions

The research presented in this thesis makes the following contributions:

1. Introduces EM-SCA as an alternative window to acquire forensic insights

from IoT devices for digital forensic investigation purposes.

7

1.5. LIMITATIONS

2. Designs and experimentally evaluates a set of ML-assisted EM-SCA

methods that can provide forensic insights from EM radiation of IoT de-

vices in digital forensic context.

3. Using empirical evaluations, identifies two methods to increase the effi-

ciency of ML-assisted EM-SCA methods: the reduction of sample rate

to a certain degree and the selection of information-leaking frequency

channels intelligently.

4. Presents an IoT forensics model that enables the investigators to utilise

a large collection of EM-SCA methods without theoretical or technical

expertise on each individual EM-SCA method.

5. Implements an open-source software framework named EMvidence that

follows the model presented in this work. The EMvidence framework fea-

tures EM data collection, analysis and also can serve as a platform for

future research and development in the field of EM-SCA for IoT foren-

sics.

1.5 Limitations

The following limitations exists in the work presented in this thesis:

• In order to prevent information leakage through EM radiation, some IoT

devices can employ hardware and software side-channel leakage miti-

gation techniques. This work only considers hardware and software that

do not employ such techniques.

• In the experiments of this work, two types of representative IoT devices

were used. While the two chosen platforms sufficiently emulate a wide

range of real-world IoT hardware, future research should consider off-

the-shelf IoT devices that are currently in general use.

8

1.6. THESIS ORGANISATION

1.6 Thesis Organisation

The rest of this thesis is organised as follows. In Chapter 2, the technical

background of concepts required to follow this thesis are presented in detail. A

comprehensive literature survey on the topic is presented in Chapter 3, which

covers a broad range of related work in the field of EM-SCA. Chapter 4 illus-

trates the methodology for addressing high-level research problem. The EM-

SCA methods for acquiring forensic insights from IoT devices are explored in

Chapter 5. Chapter 6 is dedicated to the empirical evaluation of methods for

increasing efficiency of EM-SCA methods. Finally, Chapter 7 concludes the

thesis by summarising the results and highlighting the future work.

9

Chapter 2

Technical Background

This chapter introduces a high-level technical background of the areas that are

necessary to follow later chapters. Section 2.1 introduces the nature of IoT de-

vices from both hardware and software perspective that are important to con-

sider when designing tools to inspect them in forensic contexts. Section 2.2

introduces the background of digital forensics and the challenge it faces with

the emergence of IoT. The approach taken by this research requires the reader

to be familiar with certain Digital Signal Processing (DSP) concepts and ter-

minologies. Section 2.3 covers fundamental ideas around DSP depending on

their relevance to this thesis research. EM data acquisition and analysis are at

the centre of the research presented in this thesis. As the data acquisition is

performed using Software-defined Radio (SDR) tools, Section 2.4 introduces

the technical concepts and tools that are necessary for this purpose. Further-

more, Section 2.5 introduces key ideas and procedures related to EM-SCA.

Finally, Section 2.6 briefly introduces key ideas of machine learning related to

this research providing references for further reading.

2.1 Internet of Things

Internet of Things (IoT) is a term that refers to a broad spectrum of comput-

ing devices [21, 22]. Depending on the application, the hardware and software

components of these devices may vary. However, at a high-level, an IoT device

10

2.1. INTERNET OF THINGS

TCP/IP

MCU

Actuator

Sensor

Radio

TCP/IP

TC
P/

IP

IoT-specific
Protocols

Internet

IoT Device

IoT Gateway

Figure 2.1: Components of an IoT device and a typical IoT network architecture.

consists of a few important hardware components that are of interest to EM-

SCA. The heart of an IoT device is a Microcontroller Unit (MCU). An MCU is a

tiny computer with various peripheral devices packed into a single Integrated

Circuit (IC) chip. It stores and executes the firmware. The second most impor-

tant component is the radio transceiver that helps the MCU to communicate

with the outside world through a wireless network. Depending on the intended

application, an IoT device may contain a number of sensors and actuators that

are controlled by the MCU. Similarly, some IoT applications require the device

to store a considerable amount of data outside the on-board flash ship and

therefore, a Secure Digital (SD) card slot or an on-board flash chip may also

present (see Figure 2.1). Meanwhile, System-on-Chip (SoC) hardware are

single IC chips that integrates both MCU and radio transceiver into the same

package [23]. The use of SoCs on IoT devices helps to save the space and

the energy consumption, which are essential factors for an IoT platform.

Although the very name of IoT hints that it refers to devices that are con-

nected to the internet, an IoT device is not necessarily connected to the inter-

net directly. Communicating directly through the Internet with remote servers is

an expensive move from multiple aspects [24]. From a computational resource

point of view, direct Internet connectivity requires a functioning TCP/IP proto-

col stack running on the MCU of the device, which is memory and processing

intensive. From an energy consumption point of view, direct Internet connec-

11

2.2. DIGITAL FORENSICS

tivity requires support for protocols such as WiFi (IEEE 802.11) that are not

designed to be energy efficient. Many IoT devices are battery-operated and

attempt to minimise energy consumption to maintain a longer endurance. Due

to these reasons, most IoT device applications use intermediate protocols that

are designed to be energy efficient and better suit for IoT contexts, such as

Zigbee, Bluetooth, Bluetooth Low Energy (BLE), Z-Wave, and Thread [25, 26].

2.2 Digital Forensics

2.2.1 Digital Investigation Process

A typical digital forensic investigation starts when a law enforcement encoun-

ters an electronic device in a crime scene or seized it from a person under the

investigation. These devices can vary from traditional personal computers and

mobile devices to IoT devices, such as smart home devices and wearables.

The seized devices are usually handed over to a digital forensic laboratory

where specialists perform the investigation on the device [4]. Initially, pictures

and notes are taken about the physical conditions of the device. For personal

computers, the investigation mainly focuses on the data stored in the non-

volatile memory, i.e., the hard disk or solid state drive. A forensically-sound

disk image is acquired, which is analysed using specialised software tools to

identify the pertinent information.

The sole purpose of acquiring a disk image from the device under inves-

tigation is to prevent the investigative procedure from inadvertently making

changes to the device. Popular tools such as EnCase [27] and The Sleuth

Kit [28] are designed to extract information from disk images. In contrast to

personal computers, the forensic analysis of mobile devices typically requires

specialised hardware tools due to the fact that different makes and models of

mobile devices have different internal structures. Even though there are var-

ious commercial tools available for mobile devices, they need to be updated

each time a new device model comes into the market. The maintainers of com-

mercial tools for forensic evidence acquisition on mobile devices are struggling

to keep up with the highly dynamic ecosystem of mobile devices [29].

12

2.2. DIGITAL FORENSICS

When the digital evidence is presented to a court of law as a part of an in-

vestigation, the evidence acquisition procedure can be thoroughly questioned

and challenged. This is due to the fact that legal processes follow strict proce-

dures to ensure the fairness to all parties involved. As a result, digital forensic

evidence acquisition procedures are demanded to be documented and au-

ditable. Current digital evidence acquisition procedures, practices and tools in

use are time-tested to be resilient against such legal challenges. Therefore,

whenever a completely new way of acquiring digital evidence is introduced, it

has to be thoroughly scrutinised to face reliability challenges in a court of law.

2.2.2 Forensics of Internet of Things Devices

Traditionally, digital forensic investigators deal with personal computers or mo-

bile devices as the principal digital evidence sources [2]. However, the emer-

gence of the IoT has revolutionised the potential for digital forensics by opening

up new sources of evidence [10]. IoT devices are ubiquitous in everyday life

and collect a large volume of information that can be useful in a forensic in-

vestigation [30]. For example, a fitness wearable can contain highly precise

information regarding the movements of the owner, which can assist in iden-

tifying where the person was at a particular point in time. Similarly, a smart

TV or a smart light bulb may contain information regarding the usage patterns

of the owner and might hint at the presence of the owner in a premises at a

particular time.

While IoT devices can provide valuable data for digital investigations, ac-

quisition of data from IoT devices is not a straightforward task. An IoT device

is a special purpose device designed to perform a specific task. Several man-

ufacturers produce these devices often with bespoke hardware and software

designs. As a result, IoT devices lack standard interfaces and forensic ac-

quisition methods. Therefore, IoT-focused digital forensic tools are extremely

limited. In fact, many IoT devices are not usable in investigations due to un-

availability of support from commercial vendors or open-source projects. The

large variety of IoT devices in the market makes it virtually impossible to sup-

port all of them within a limited tool set. This can often result in a device

13

2.2. DIGITAL FORENSICS

requiring a memory chip-off procedure in order to access its data [13]. How-

ever, with the increasing application of lightweight cryptographic algorithms in

IoT devices, such a physical access into the device may not be a viable way to

acquire forensic data [31]. Furthermore, some IoT devices may not store any

data on-board at all. Instead, the data they produce are delivered to an asso-

ciated smartphone or a cloud server, rendering the direct forensic inspection

of such IoT devices a futile exercise.

2.2.3 Encrypted Devices

Due to the increasing concerns regarding security and privacy among com-

munities, modern computer systems are designed and shipped with built-in

security mechanisms. Popular smartphones, such as iOS and Android based

devices, encrypt their internal storage in order to protect user data from third

parties [29]. Each of the mainstream PC operating systems, such as Mac

OS, Windows, and Linux, provide built-in hard disk encryption. Meanwhile,

network communications, both wired and wireless, employ strong packet en-

cryption mechanisms. Modern computer hardware have made the handling

of encrypted data an everyday possibility in consumer, industrial and military

applications [32]. Computer devices seized at a crime scene containing en-

crypted data poses a huge challenge to the investigation. The IoT ecosystem

is no exception to this data encryption trend making the challenge of digital

forensic investigations on IoT devices even more challenging.

Whenever encryption is involved in the storage of a device being investi-

gated, forensic tools are unable to extract information [10]. From the investiga-

tor’s perspective, a very limited number of workarounds are potentially viable.

The obvious approach can be asking the device owner for the decryption key

or password. However, if the device owner is not cooperative, this approach is

not viable. Another possible approach can involve seeking the assistance of

the device vendor to unlock the access to data using whatever the capabilities

the vendor holds. However, many recent cases indicate that even the device

vendors does not have access to the encrypted data storage on devices they

produce. Under these circumstances, forensic investigations may end up un-

14

2.3. DIGITAL SIGNAL PROCESSING

able to collect the required evidence from the devices they have seized [33].

For a more comprehensive background on the domain of digital forensics,

please refer to the two textbooks by Eoghan Casey [3] and Xiaodong Lin [34].

2.3 Digital Signal Processing

Digital Signal Processing (DSP) is a broad field that is focused on mathemat-

ical methods and algorithms to process signals on computers. A signal is a

function that can describe how a particular parameter is related with another

parameter in a system [35]. In different words, a signal represents a quantity

that varies against another quantity. The former quantity is called dependent

variable, while the latter quantity is called the independent variable. For exam-

ple, the variation of temperature inside a building over time is a signal, where

temperature is the dependent variable while time is the independent variable.

2.3.1 The Nature of a Signal

Signals that have a pattern repeating over a specific time period are called

periodic signals. Such periodic signals contain some important properties that

help to uniquely distinguish them. Frequency (f) is the number of repeating

patterns occur in the signal within a time period of a second, measured in

Hertz (Hz). The distance between two consecutive peaks is called wavelength

(λ) of the signal, measured in meters (m). For a given time instance, the value

of the dependent parameter of the signal is called amplitude (A), which can

be measure in decibel (dB). Phase (φ) is the current shift of the signal from a

reference position. A periodic signal with frequency f produces further signals

with positive integer multiples of f , called harmonics. The harmonics of a

wave is numbered according to this integer multiple such as 1st harmonic (the

fundamental frequency f itself), 2nd harmonic (2f), 3rd harmonic (3f), etc. [35].

15

2.3. DIGITAL SIGNAL PROCESSING

0 2 4 6 8 10
Time

−1.0

−0.5

0.0

0.5

1.0

A
m

pl
it

ud
e

Aλ

Fundamental Frequency: f = 1
λ

Second Harmonic: 2f

Third Harmonic: 3f

Fourth Harmonic: 4f

0 2 4 6 8 10
Time

−1.0

−0.5

0.0

0.5

1.0

A
m

pl
it

ud
e

Sample Rate: 1Hz Analog Signal

Discrete Samples

Figure 2.2: Properties of a periodic signal.

2.3.2 Analog and Digital Signals

A signal can be either continuous or discrete. A continuous signal has contin-

uous values for both its dependent and independent variables. In contrast, a

discrete signal has only discrete, i.e., countable, values for its variables. An-

other categorisation is analog and digital signals. An analog signal is a contin-

uous signal. Most signals found in the nature are analog signals. Meanwhile,

a digital signal is a special kind of discrete signal that has discrete values for

both dependent and independent variables.

In order to process signals on modern computers, the signals has to be in

digitised form. That means, analog signals have to be converted into digital

signals before they are fed into computers. The digitisation of an analog sig-

nal is called Analog-to-Digital Conversion (ADC), which consists of two steps;

sampling and quantisation. By sampling a signal, the continuous independent

16

2.3. DIGITAL SIGNAL PROCESSING

variable of the signal, i.e., time for most signals, is converted into a discrete

variable. Sampling is achieved by capturing the value (a sample) of the de-

pendent variable over predefined intervals of the independent variable (see

Figure 2.2). The number of samples taken per second is called sample rate

of the ADC. Meanwhile, the quantisation is achieved by converting a captured

continuous sample value into one of the predefined discrete set of values.

The number of discrete set of values available for the quantisation process

depends on the number of digits used to represent a sample.

Due to the nature of sampling and quantisation, the conversion of an ana-

log signal into a digital signal causes loss of information. Due to the limited

number of bits available to represent a sample, the number of potential discrete

values available is finite. Therefore, multiple continuous values in the analog

signal can be mapped into the same discrete value in the digital signal caus-

ing information loss. This is called quantisation error. Increasing the size of a

sample, i.e., bit length of a sample, can minimise quantisation error. Similarly,

due to the discrete time intervals used, poor sample rates can lose informa-

tion of the analog signal and cause errors, such as aliasing, at later stages.

Therefore, sample rate has to be at least as twice as the highest frequency of

the analog signal, in order to prevent aliasing errors. This phenomena is often

referred as Nyquist sampling theorem [35].

2.3.3 Time and Frequency Domains

A signal can be represented and processed in two major forms, namely the

time domain and the frequency domain. When a signal is in the time domain,

the independent variable is time while the dependent variable is the magnitude

of the signal. When in the frequency domain, the independent variable is fre-

quency components of the signal while the dependent variable is magnitude of

each frequency component. A signal can consists of multiple frequency com-

ponents that we cannot see from the time domain. In order to convert a time

domain signal into the frequency domain, we have to decompose and extract

individual frequency components of the original signal. This decomposition

can be performed through a Fourier transform. The most commonly used al-

17

2.3. DIGITAL SIGNAL PROCESSING

0 20 40 60 80 100
Time

2

1

0

1

2

Am
pl

itu
de

0 2000 4000 6000 8000 10000
Frequency

198
178
158
138
118

98
78
58
38
18

PS
D

(d
B/

Hz
)

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time Steps

0

2000

4000

6000

8000

10000

Fr
eq

ue
nc

y

Figure 2.3: Visualisation of a signal as waveform, power spectral density (PSD), and
spectrogram.

gorithm for a Fourier transform is the Fast Fourier Transform (FFT) that is fast

and efficient compared to others [35, 36]. Furthermore, instead of perform-

ing FFT over the entire signal, small consecutive segments of the signal over

time axis can be used to perform the Fourier decomposition called Short-term

Fourier Transform (STFT). The result of STFT contains frequency information

for each segment and time information across segments.

18

2.3. DIGITAL SIGNAL PROCESSING

2.3.4 The Visualisation of Signals

Visualisation of signals can be done in various ways depending on the specific

information that need to be conveyed. The most simplest form is plotting the

waveform of the signal in time domain. In a waveform diagram, the x-axis rep-

resents time while the y-axis represents amplitude of the signal. Although the

shape of the signal is visible in waveform, the frequency related information

are not visible. An FFT plot can be used to illustrate the frequency information

of a signal where the x-axis represents frequency while the y-axis represents

magnitude of each frequency component of the signal. Power Spectral Density

(PSD) plots are another way similar to FFT plots where power spectral density

is represented in the y-axis. However, an FFT or PSD plot lacks time informa-

tion. In order to visualise both time and frequency information, a spectrogram

can be used. A spectrogram has time information in one axis while frequency

information is depicted in the other axis. The magnitude variation of each

frequency component over time is represented by a color coding. Figure 2.3

represents three visualisation of a signal, i.e., waveform, PSD, and spectro-

gram, that has four frequency components mixed inside namely, 1 kHz, 2 kHz,

3 kHz, and 4 kHz.

2.3.5 Tools and Libraries

When using DSP in applications and research, dedicated tools are neces-

sary. DSP can be performed on either dedicated hardware platforms or on

general purpose computers with the help of specialised software. The ad-

vancements of Very Large-scale Integration (VLSI) technologies have enabled

the possibility of building dedicated computing hardware to perform special

tasks, with the help of hardware systems such as Field-programmable Gate

Arrays (FPGA) [37]. As a result, special-purpose DSP processors can be built

to perform application-specific tasks. Although such hardware-implemented

DSP tools are extremely efficient, they are expensive and require specialised

technical expertise. In contrast, various software tools and libraries in different

programming languages are available to facilitate DSP on general purpose

19

2.4. SOFTWARE-DEFINED RADIO

RF Capture and
AmplificationADCSample Rate

ConversionDSPData

Software-Programmable Software-Controllable

Analog WorldDigital World

Figure 2.4: The architecture of a software defined radio (SDR) platform.

computers. In Python language, numpy, scipy, and matplotlib libraries col-

lectively provide DSP capabilities [36]. All the experiments presented in this

thesis research use the aforementioned Python libraries to process EM data.

2.4 Software-defined Radio

2.4.1 Software-defined Radio Architecture

Radio technology facilitates the transmission and the reception of information

using electromagnetic radiation. Traditionally, radio transceivers have analog

physical layers handling all types of processing. With the inception of digital

data processing capability, modern analog physical layers of radios can be

software-controlled. Taking it further, Software-defined Radio (SDR) moves

most of analog physical layer functionalities of a radio device into digital do-

main [38] making them software-programmable. Consequently, SDR platforms

can be used to build radio applications that are more flexible and adaptable to

changes [39]. Figure 2.4 illustrates the architecture of an SDR platform that

operates in between analog and digital worlds. The analog components of an

SDR are software-controllable, meaning that certain setting of analog compo-

nents can be controlled by software, such as the base-band frequency of the

receiver and the level of signal amplification.

20

2.4. SOFTWARE-DEFINED RADIO

Figure 2.5: RTL-SDR and HackRF One devices with their default antennas.

2.4.2 Software-defined Radio Hardware Tools

The first component of an SDR platform that faces the analog world is its

hardware. As described in Subsection 2.4.1, the hardware side of SDR is

bare minimum and provide only the EM signal capture, amplification, and ADC

functionalities. Various SDR hardware devices are available in the market that

differ from each other due to their supported frequency range, sample rate,

and amplification capability.

RTL-SDR is a repurposed digital TV and radio receiver that has been

shown to be usable as an SDR hardware [40]. Costing less than e15, it is

the least expensive SDR device. Different models of RTL-SDR devices con-

sist of different frequency ranges and sample rates. Generally, their frequency

range is about 22 MHz to 1 GHz. Similarly, sample rate of an RTL-SDR device

is somewhere close to 3.2 MHz. HackRF One is a much more powerful SDR

device [41]. It has a operating frequency range of 1 MHz to 6 GHz, enabling

it to be used in a wide variety of radio applications. It has a maximum sample

rate of 20 MHz. In contrast to RTL-SDR, HackRF One is a half-duplex de-

vice and therefore, it can be used for both reception as well as transmission

of radio signals. It supports a wide variety of antenna types depending on the

application. Both RTL-SDR and HackRF One devices are USB-powered and

21

2.4. SOFTWARE-DEFINED RADIO

Figure 2.6: Near field antennas of varying diameters and lengths along with a semi-
rigid RF cable.

able to deliver their data to software running on a computer via the same USB

port. Therefore, it is convenient to use them on general purpose computers.

Figure 2.5 depicts the devices with their default antennas.

Depending on the nature of the EM signal, the type of the antenna that

should be used to capture signals differs [42]. H-loops are a type of antennas

that is useful to capture weak EM radiation from small regions of electronic cir-

cuits. They are designed to behave as an inductive coil capturing the EM field

in the vicinity. The diameter of an H-loop antenna decides its spatial resolu-

tion and the sensitivity. Throughout the experiments of this thesis, a near-field

H-loop antenna kit from RF Explorer was used (see Figure 2.6) [43]. The an-

tenna kit consists of SubMiniature version A (SMA) female connectors making

them compatible with the HackRF One SDR device. Furthermore, the charac-

terised frequency range of the antenna kit is between 1 MHz to 7 GHz, which

sufficiently covers the EM side-channel signal frequencies. When placing the

antenna in close proximity to a specific region of an electronic circuitry, a semi-

rigid RF cable can be used in between the antenna and the SDR device to hold

the setup without human intervention.

While the near-field H-loop antennas can help to localise a signal being

22

2.4. SOFTWARE-DEFINED RADIO

Figure 2.7: GQRX SDR software capturing and visualising EM data from a connected
HackRF One device.

emitted from a specific location of an electronic circuit, it is possible to use

directional antennas and signal amplifiers to observe EM radiation from elec-

tronic circuits at longer distances up to several meters [44].

2.4.3 Software-defined Radio Software Tools

The EM data samples captured by SDR hardware need to be processed in or-

der use them in applications. DSP software libraries that were discussed pre-

viously can be used for this purpose. However, there are dedicated software

tools and libraries that facilitate the configuration and proper control of SDR

hardware. In order to capture data through SDR hardware and perform the ba-

sic signal demodulation and visualisation, tools such as GQRX SDR [45] and

SDR# (SDR Sharp) [46] can be used (see Figure 2.7). For better control over

SDR hardware and data produced by them, much advanced software libraries

are necessary. GNU Radio is an open-source software library that supports a

wide variety of SDR hardware and provide a rich set of EM data processing

functions [47]. It is possible to build SDR-based radio applications entirely on

software by programming in Python by using GNU Radio libraries for Python.

23

2.4. SOFTWARE-DEFINED RADIO

A

φ

Polar Coordinate System

In-phase Axis

Q
ua

dr
at

ur
e-

ph
as

e
A

xi
s

A

φ

(I,Q)

(0, 0)

I(t) = A(t) cos(φ(t))

Q(t) = A(t) sin(φ(t))

Cartesian Coordinate System

Figure 2.8: Representation of an SDR data sample in polar and Cartesian coordinate
systems.

In addition to that, GNU Radio library provides a GUI tool called GNU Radio

Companion (GRC) that allows creating SDR applications as Python programs

through a drag-and-drop interface [48].

2.4.4 The Nature of Software-defined Radio Data

Due to different bit lengths allocated and the encoding used, the data samples

produced by each SDR hardware device can differ from each other. How-

ever, when using GNU Radio library to handle the SDR device, the EM data

samples that come through the library have a consistent format. The resulting

samples of GNU Radio library are in In-phase/Quadrature-phase (I/Q) data

format, which can be described further as follows.

The Equation 2.1 represents a sine wave where A is amplitude, f is fre-

quency, t is time, and φ is phase.

A cos(2πft+ φ) (2.1)

According to the equation, the amplitude, frequency, and phase collec-

tively can represent a signal. However, when a spontaneous state of a signal

needs to be represented, the amplitude (A) and phase (φ) alone are sufficient,

if they are placed in a polar coordinate system. Such a representation of a

24

2.5. ELECTROMAGNETIC SIDE-CHANNEL RADIATION

specific point of a signal with A and φ in a polar coordinate system can be

converted into a Cartesian coordinate system where the same information are

represented by using the coordinates of the two axes. The horizontal axis of

this new Cartesian coordinate system is labeled as the In-phase (I) axis while

the vertical axis is labeled as the Quadrature-phase (Q) axis (see Figure 2.8).

This means, a signal sample captured by the SDR can be represented using

two coordinates (I, Q) and they are usually stored and processed as a com-

plex number. The real component of the complex number represents the I

coordinate, while the imaginary component of the complex number represents

the Q coordinate [49].

In GNU Radio library, two 32 bit (4 byte) floating point values are used to

represent a complex I/Q sample. Therefore, each EM data sample is a 8 bytes

long complex value. When capturing EM data using an SDR hardware and

GNU Radio library, these I/Q samples are produced in a continuous stream

with a rate equal to the sample rate of the SDR hardware.

Due to the Nyquist sampling theorem, the sample rate has to be twice as

large as the frequency of the interested signal in order to prevent aliasing.

This can pose a challenge to signal acquisition devices when attempting to

capture a high-frequency signal. However, this limitation negatively affects

only to real-valued sampling. The use of I/Q sampling helps SDR devices

to overcome this challenge. Firstly, they shift the centre of frequency band

of interest to baseband, i.e., 0 Hz, at the analog hardware front-end using

a local oscillator. Secondly, they produce complex I/Q samples. By doing

so, SDRs can use a sample rate that is lower than the signal frequency it is

capturing [50]. Furthermore, the sample rate of SDR devices are equal to the

signal bandwidth they capture.

2.5 Electromagnetic Side-Channel Radiation

2.5.1 Sources of Electromagnetic Side-Channels

EM waves can be generated from electrical and electronic systems without the

intention of the designers when conductors in a circuit accidentally behave as

25

2.5. ELECTROMAGNETIC SIDE-CHANNEL RADIATION

antennas [51, 52]. Electronic circuits that perform high-speed switching oper-

ations are especially susceptible to generating unintentional EM noise due to

their higher frequencies. Among them, digital electronic components used on

computers are well known sources of EM noise since they employ high-speed

clocks to carry out their internal operations [53]. CPU, memory chips, data and

address bus lines, various ports such as USB and Ethernet are examples of

EM radiation sources on a typical computer system. Among these, EM radia-

tion from the CPU is well-known to leak information about the internal activities

of the CPU including data being handled.

Unlike the CPU units used on PCs, the MCU units used on IoT devices are

designed to consume less power and hence, they cause weaker EM radiation

compared to their PC counterparts [53]. While any IoT device can be designed

with a unique MCU, there is an important commonality of components. There

are only few common architectures used for MCU in most IoT devices, e.g.,

ARM, AVR, and MSP430. This means, EM radiation patterns identified from

a particular processor chip should be applicable across many IoT devices that

employ them.

2.5.2 Observation of Electromagnetic Side-Channels

Observation of unintentional EM radiation from computing devices can be

made using traditional signal analysis hardware, such as oscilloscopes and

spectrum analysers. An alternative is SDR, where fast ADCs are used to digi-

tise EM signals and feed into software for processing and visualisation. Com-

pared to the traditional options, SDRs provide more flexibility and ease of use

to non-signal analysis professionals. In order to observe EM radiation from

a target device’s CPU, the EM radiation frequency needs to be determined.

The clock frequency of the CPU is the most fundamental frequency for EM

radiation. Furthermore, the harmonics of this fundamental frequency can also

contain the desired information. Therefore, the exact choice of the frequency

depends on what has the highest amplitude with the least amount of external

interference.

A simple hardware set-up can be used to demonstrate the unintentional

26

2.5. ELECTROMAGNETIC SIDE-CHANNEL RADIATION

Figure 2.9: Hardware setup to observe EM radiation from an Arduino device blinking
an LED.

EM signals generated by an IoT device observed using an SDR platform. An

Arduino prototyping board is loaded with a simple program to blink an LED

connected to it via its general purpose I/O pins. An antenna connected to

an RTL-SDR dongle (an SDR with low sample rate) is placed close to the

Arduino board in order to receive unintentional EM signals emitted from the

board (see Figure 2.9). The Arduino board consists of an MCU that operates

at 16 MHz. However, the RTL-SDR dongle cannot be tuned to frequencies

below 22 MHz. Therefore it was tuned to the second harmonic of the Arduino’s

clock speed, i.e., 32 MHz. Figure 2.10 illustrates the spectrograms of three

different EM signal observations. When two different LED blinking patterns

are performed by two different programs separately, the Arduino emitted two

completely different EM signal patterns as can be seen from Figure 2.10 (a)

and Figure 2.10 (c). The transition of Arduino device from running first program

to the second is depicted in Figure 2.10 (b).

27

2.5. ELECTROMAGNETIC SIDE-CHANNEL RADIATION

0 5 10 15 20
0

5000

10000

15000

20000

25000

Fr
eq

ue
nc

y
(H

z)

(a)

−140
−120
−100
−80
−60
−40
−20
0

In
te

ns
ity

[d
B

]

0 5 10 15 20
0

5000

10000

15000

20000

25000

Fr
eq

ue
nc

y
(H

z)

(b)

−140
−120
−100
−80
−60
−40
−20
0

In
te

ns
ity

[d
B

]

0 5 10 15 20

Time (s)

0

5000

10000

15000

20000

25000

Fr
eq

ue
nc

y
(H

z)

(c)

−140
−120
−100
−80
−60
−40
−20
0

In
te

ns
ity

[d
B

]

Figure 2.10: Spectrograms of AM demodulated EM radiation acquired from an Ar-
duino device. In (a) and (c), the device is running two unique programs, while (b)
depicts the transition period.

2.5.3 Leakage of Critical Information

When performing an EM-SCA attack, the information about internal operations

of the device being attacked are modulated into the radiation signal in various

ways. This exact method of leaking data through an EM side-channel is called

the leakage model. It is necessary to assume a specific leakage model when

performing an EM-SCA. From the inception of side-channel cryptographic key

recovery attacks, the major leakage model that has been explored is Hamming

weight leakage model. In multiple publications by Kocher et al., it has been

shown that the Hamming weight of the data being handled by a CPU gets mod-

ulated into the side-channel – hence the name of the leakage model [54, 55].

Another closely associated model that often gets considered is the Hamming

28

2.6. MACHINE LEARNING

distance leakage model where the number of bits that gets flipped is assumed

to be modulated into the EM radiation [56]. Further improvements have even

lead to the modelling of the exact bit transitions, which can be either 0→ 1 or

1→ 0, called switching distance leakage model [17].

Aleak t = αHW (Pt ⊕Kt) + ηt (2.2)

Fobserve = Fclock ± Fleak (2.3)

When attacking a cryptographic algorithm with the intention of retrieving

the encryption key under Hamming weight model, it is assumed that in a spe-

cific point in the execution of the algorithm, the Hamming weight of the cryp-

tographic key bits are exposed [57]. For example, consider a simple cipher

where a plaintext, P , is associated with a key, K, through XOR operations to

generate the ciphertext. The amplitude of the information leaking EM signal

Aleak t can be modelled with the Hamming weight leakage model as shown the

Equation (2.2). HW is the Hamming weight function while Pt and Kt are the

plaintext and key bytes XOR-ed at the time instance t. α is a positive integer

used as a scaling factor while ηt is the noise at time t. When a signal gets

modulated with a carrier wave, such as CPU clock or on-board radio transmit-

ter signal through the amplitude, it causes side-bands to occur between the

carrier wave [58]. For example, consider the clock frequency of a CPU to be

Fclock and the frequency of the leakage signal to be Fleak. This causes the

observation of a frequency bandwidth Fobserve that spans from (Fclock − Fleak)

to (Fclock + Fleak) as illustrated in the Equation (2.3).

2.6 Machine Learning

The domain of Machine Learning (ML) deals with building computer algorithms

that can learn from data without a need for explicit programming [59]. ML al-

gorithms can be basically categorised into two principal classes as supervised

and unsupervised learning algorithms. In supervised learning, the algorithm

is given a sufficiently large set of labeled data to learn. Once learned, the

29

2.6. MACHINE LEARNING

algorithm can be exposed to new data where it can figure out the appropri-

ate labels based on past experiences. In unsupervised learning, the algorithm

is exposed to data without prior labelling and it figures out relations between

different aspects of input data on its own. Meanwhile, problems that can be

solved using ML can again be categorised into two classes as regression and

classification problems. In regression problems, the objective is to predict a

value of a parameter based on input data. As the name implies, classification

problems deal with classifying data into predefined or self-learned group of

classes.

The choice of the ML algorithm to use when trying to solve a problem

depends on a multitude of factors such as the class of the problem, the amount

of data available, and the nature of those data. Linear regression, support

vector machines (SVM), decision trees, and neural networks are to name a

few of ML algorithms in use [60]. Regardless of the algorithm, the application

of ML algorithms on a problem typically follows a similar process. The first

step of applying ML in a problem is the careful study of the problem and the

availability of data. Then, an ML model is trained using a training dataset. A

trained ML model is evaluated using further testing and validating data in order

to identify whether it sufficiently represents the real world. If the evaluation

process turns out that the model is not accurate enough, the reasons need to

be identified to start model training process once again from the beginning.

When training and testing ML models to solve real-world problems, ML al-

gorithms need to be implemented as computer software. In order to ease the

life of researchers and developers, a wide variety of software libraries have

been developed that implement almost all the published and recognised ML

algorithms. Some of the most popular ML software libraries include Scikit-

learn [61], PyTorch [62], and TensorFlow [63] – all of them are supported in

Python language. In the research presented in this work Python-based li-

braries are preferred due to the ease of integrating those trained models with

our larger software framework, which is implemented on Python.

A more detailed account of the topic is given by Christopher M. Bishop [60]

and Aurélien Géron [59].

30

Chapter 3

Related Work

This chapter introduces the related work of this research topic covering a wide

body of literature. The organisation of this chapter is as follows. Section 3.1

discusses side-channel attacks in general. Section 3.2 introduces how EM

radiation are generated from computing devices and how they can be cap-

ture for analysis. Such EM radiation captured from computing devices can be

used for two different purposes from the perspective of information security

and forensics. The first is the possibility of using EM radiation as a signature

to uniquely identify hardware and software. This topic is discussed in Sec-

tion 3.3. The second is the possibility of exfiltrating information through the

EM side-channel, covered in Section 3.4. Section 3.5 explores the literature

on the standards related to EM side-channel attacks. Furthermore, it intro-

duces some of the tools available for EM-SCA attacks. Finally, Section 3.6

introduces the recent advancements in the field that may shape the future di-

rection of EM-SCA.

3.1 Side-Channel Attacks

The domain of side-channel attacks spans over a wide variety of techniques.

Each side-channel attack on a computer system focuses on a specific uninten-

tional information leakage through either hardware or software. The amount

of memory and cache spaces shared between different software, the time a

31

3.1. SIDE-CHANNEL ATTACKS

program takes to respond to different inputs, the sound different components

of computer hardware make, the amount of electric current a computer system

draws, and the EM radiation a computer hardware emits are examples of such

side-channels. This section provides an overview of side-channel attacks in

general.

Computer programs contain conditional branches and loops in order to

handle input and produce the intended output. Depending on the input val-

ues, the execution path of a program can vary, which may result in a different

program execution time. It has been shown that the execution time of encryp-

tion algorithms can reveal information regarding the input values provided to

it, which includes cryptographic keys [64]. For example, the square and multi-

plication segment in RSA algorithm checks whether a key bit is 0 or 1 before

moving into multiplication operations. Therefore, observation of large num-

ber of execution times with the same key and different input data can lead to

uncovering cryptographic key bits effectively [64, 65, 66].

In environments where multiple Virtual Machines (VM) run on the same

hardware, e.g., cloud infrastructure, cache-based side-channel attacks are

possible [67]. While each VM has its own virtual resources, many of them are

mapped into shared physical resources including shared cache memories. It

has been shown that an attacker running a VM on a virtualised environment

can spy on a victim VM through the shared cache storage, which can lead to

the extraction of sensitive information such as cryptographic keys [68].

It has been shown that acoustic emanations from various components and

peripherals of computer systems can be used to exfiltrate information [69].

Genkin et al. showed that it is possible to distinguish between CPU operations

by listening to acoustic emanations resulting in an attack on the cryptographic

keys of the RSA algorithm [70].

Computer displays and their video cables have been identified to leak in-

formation about the content being displayed on the screen through EM radia-

tion. Such leakages from Cathode-ray Tube (CRT) displays have been known

for several decades [71, 72]. Video information provided to a computer dis-

play has synchronisation information to recognise between different lines of

pixels and different frames, which are called horizontal and vertical synchroni-

32

3.1. SIDE-CHANNEL ATTACKS

sations. By recognising this synchronisation information in the EM radiation,

an attacker can reconstruct the images being displayed [73, 74].

In [54, 55], Kocher et al. were the first to introduce power consumption-

based side-channel attack: Simple Power Analysis (SPA) and Differential

Power Analaysis (DPA). In SPA, power consumption variation over time is

sampled for a target computing device while it is performing a particular ac-

tivity. The waveform of the power consumption data, when plotted against

time, contains patterns that correspond to the instructions executed on the

target device. If SPA can reveal the sequence of instruction operations of

a cryptographic algorithm, it follows that the sequence depends on the data

being handled by the algorithm (due to conditional branching). Designing

code to minimise data dependent branching, which does not show character-

istic power consumption patterns for specific operations, can prevent attackers

from recognising what is being executed on the device [75].

DPA is a technique that can be custom-tailored for specific encryption al-

gorithms. Kocher et al. used the DPA technique against the Data Encryp-

tion Standard (DES) algorithm [54]. The technique was able to guess the

encryption key accurately, given sufficient cipher texts and the power traces

corresponding to those encryption operations. Kocher et al. claim that they

have used DPA to reverse engineer various unknown algorithms and proto-

cols on devices. Furthermore, they state that it may be possible to automate

this reverse engineering process and also use the same techniques with EM

radiation in addition to power consumption.

While various side-channel attacks are possible on computer systems,

it is possible to increase the advantages achievable by combining multiple

side-channels that leak different kinds of information together into a single at-

tack [76]. For example, the power analysis and EM analysis can be performed

together in order to reduce the errors and improve the accuracy of inferring the

leaked information from a computer system.

33

3.2. UNINTENTIONAL ELECTROMAGNETIC RADIATION

3.2 Unintentional Electromagnetic Radiation

EM radiation is the underlying technology for numerous of wireless commu-

nication. Meanwhile, it is a well known fact that electronic devices generate

EM radiation on unintended frequencies as a side effect of their internal op-

erations [53]. Such unintended EM radiation are regulated by government

agencies, such as Federal Communications Commission (FCC) in the USA,

due to the possible interference they can make on legitimate wireless commu-

nication and the potential health issues they can cause to the users of these

devices. However, it is not possible to entirely avoid such radiation and the

equipment manufacturers attempt to minimise it as much as possible [77].

This section discusses how EM signals are generated from different compo-

nents of a computer system, what kind of information they can carry, and what

types of methods and tools can be used to capture these signals.

3.2.1 Hardware that Causes Electromagnetic Radiation

As derived from Maxwell’s equations [51], EM waves can be generated by

electric currents varying over time. Characteristics of the EM waves being

generated, such as frequency, amplitude, and phase, depend on the nature

of the time varying electric current. Based on this principle, modern commu-

nication systems generate oscillating currents on antennas that generate EM

waves that propagate over free space to be captured by another antenna with

appropriate properties. The fact that modern computer systems have a large

number of components that depend on electric pulses or alternating currents

for their operations, leave the space for EM waves to be generated at unex-

pected frequencies without the intention of the system manufacturer.

There are multiple computer components that operate in a coordinated,

sequential fashion according to clock signals. Among them, both the CPU and

the RAM are important. The CPU performs a cycle of fetching, decoding and

executing instructions while the RAM maintains data and instructions when

the device is powered on. The EM radiation from these components carry a

significant amount of side-channel information regarding the events related to

34

3.2. UNINTENTIONAL ELECTROMAGNETIC RADIATION

software execution and data handling. On most IoT devices, the CPU and the

RAM are included in the MCU making them the most important EM source.

3.2.2 Sampling Electromagnetic Radiation

The EM radiation frequencies of a device is unpredictable due to its depend-

ability on various hardware characteristics. Therefore, it is difficult to have a

universal purpose device, which can be used to observe EM radiation from

a computer and interpret side-channel information. It has been shown that

small magnetic H-Loop antennas can be used for this purpose of picking EM

radiation from computing devices [17]. When EM signals are picked up by

an H-Loop antenna, it requires digital sampling before the data can be used

for analysis. Theoretically, the sample rate of the equipment should be twice

that of the maximum EM frequency required to be captured – referred to as

Nyquist frequency [35]. For this reason, the EM signal sampling equipment

must have a very high sample rate. The most commonly used equipment,

with high sample rates to capture EM signals, are oscilloscopes and spectrum

analysers. The digitised data these devices capture can be later analysed

in signal analysis software. However, access to such devices for information

security professionals is not very common [78].

SDR are getting increasingly popular among wireless hackers, hobbyists,

and security enthusiasts who are interested in accessing the RF spectrum. An

SDR consists of a minimal hardware component that can be tuned to a range

of RF frequencies and digitise signals with a fast ADC. These digitised sam-

ples are processed entirely on software [39]. A wide variety of SDR hardware

and software platforms are available [40, 41, 79, 47]. Due to the great flexibil-

ity provided by software, SDR platforms have become a perfect candidate for

research in EM-SCA. An SDR can be used to scan through a wide range of

frequencies to locate potential EM radiation from a computer system.

35

3.2. UNINTENTIONAL ELECTROMAGNETIC RADIATION

3.2.3 The Connection between Instructions and Electro-

magnetic Radiation

As a result of executing instructions in different combinations by the CPU, EM

signal patterns are emitted at various frequencies and amplitudes. Depend-

ing on the sequence of instructions, i.e., the exact program being executed,

the output of EM noise from the CPU varies significantly. Due to this, sys-

tematically modelling and predicting possible EM signal characteristics of a

computer processor is a difficult task. In order to identify unintentional EM

radiation of a computer processor, the most practical method is scanning a

large frequency spectrum for suspected EM signals and subsequently trying

to interpret these identified signals for potential side-channel information. This

arduous approach is a time consuming task that requires manual inspection

by a human user.

Callan et al. introduced a metric, called Signal AVailability for an ATtacker

(SAVAT), that measures the power of emitted EM signal when a CPU is exe-

cuting a specific pair of instructions (A and B). The authors show that different

selections of A and B instruction pairs emit different SAVAT values, i.e., signal

power [80, 81]. An improvement to the SAVAT technique is a method called

Finding Amplitude-modulated Side-channel Emanations (FASE). The key idea

behind the FASE technique is as follows. When a program activity is alternat-

ing at a frequency (falt) that affects any periodic EM signal originating from

any source at a frequency fc, it is possible to observe two side-band signals at

fc − falt and fc + falt between the fc signal. Further improvements to SAVAT

technique enabled the possibility of identifying both amplitude and frequency

modulated EM radiation from CPUs [82, 83, 84]. While it is evident from the

existing studies that the EM side-channel leakage is available across various

type of CPUs, further studies are necessary to identify the effect of different

CPU architectures to the EM radiation.

36

3.3. ELECTROMAGNETIC RADIATION AS A SIGNATURE

3.3 Electromagnetic Radiation as a Signature

Due to the manner the EM radiation are generated by the CPU of a device,

these radiation patterns correlate with the specific hardware and software set-

tings of the source device. This section discusses the use of this correlation

as a signature for the hardware and software of computers.

3.3.1 Electromagnetic Radiation as a Hardware Signature

Despite of the software components available on a computing device, it is im-

portant to investigate whether the hardware alone can provide a recognisable

EM radiation pattern. Such a capability can lead to profiling of hardware de-

vices and components in order to uniquely identify them purely based on their

EM radiation. It has been shown that the simple EM signal acquisition device,

the RTL-SDR, can be used to uniquely profile computing devices. Laput et

al. used a similar device to acquire EM signals, which were successfully ap-

plied to an SVM classifier to uniquely distinguish the EM source device [85].

This possibility has lead to the idea that EM radiation from an electronic de-

vice owned by a person can be used as an authentication token of the person

instead of relying on conventional methods such as Radio Frequency Identifi-

cation (RFID) tags [86, 87].

This uniquely distinguishable EM radiation patterns of a known electronic

device can help to identify any potential alteration that may have applied

to it. For example, when a known electronic device is altered at the hard-

ware fabrication level for a malicious purpose such as accessing stored data

or eavesdropping on user’s activities, the hardware modification results in a

changed EM radiation pattern. Such changes in radiation pattern can be used

to uniquely identify the device [88]. Similarly, a genuine electronic device can

be replaced with a counterfeit with a malicious objective. It has been shown

that even when the counterfeit hardware attempts to follow the design of the

genuine device, it still creates distinguishably different EM radiation patterns

compared to their original product [89].

37

3.3. ELECTROMAGNETIC RADIATION AS A SIGNATURE

3.3.2 Electromagnetic Radiation as a Software Signature

When software runs on different computing devices, it is clear that the hard-

ware EM radiation are influenced by the software instructions being executed.

It is important to consider this influence from two different aspects. The first is

how uniquely the EM radiation of different software running on the same hard-

ware platform can be recognised. This can be used to pin point to the exact

software running on a device. The second aspect is how unique the same

software program is when it is running across various hardware platforms. It

facilitates the unique detection of a specific piece of software.

When software systems are being developed, requirements arise to de-

bug their behaviour or find ways to increase the performance. Instrumenting

the software by applying logging events and break points are the most com-

mon ways to identify where complex software is not performing as expected.

These instrumentation affect the performance of the software being inspected

in addition to the overhead of their placement each time a copy of the software

needs to be inspected. It has been shown that unintended EM radiation of the

CPU can be used to inspect software execution sequences without having to

instrument the software each time it is required to be inspected [90, 91, 92, 93].

The capability to detect a software code execution sequence has opened

up the opportunity to identify when a computing device is running a software

code not intended by the manufacturer or the owner due to various reasons.

One possible scenario can be the software bugs or hardware faults that cause

an IoT device to execute unexpected instruction sequences. Another possible

scenario can occur when an IoT device is under an attack causing it to run

malware or an unintended part of the device’s genuine software. Both Stone

et al. [94, 95] and Nazari et al. [96] showed that such abnormal deviations of

the software code executions on computing devices can be detected using the

EM radiation patterns.

The simplest form of representing EM side-channel radiation data is the

waveform of the signal in the time domain. Stone et al. built matched-filter

classifiers that utilise the correlation between known EM signal waveform vec-

tors with unknown EM signal waveform vectors to detect software activities on

38

3.3. ELECTROMAGNETIC RADIATION AS A SIGNATURE

MCUs used in embedded devices [94]. In this work, the software activities

considered were individual CPU operations such as mov, add and sub instruc-

tions. In order to generate matched-filter templates, an assembly program that

executed a particular CPU operation continuously was used to trigger a GPIO

pin value. This GPIO trigger was separately probed in order to identify the

boundaries of EM radiation signals in order to extract the matched-filter tem-

plate trace. Stone et al. continued to demonstrate that instead of using the

time-domain signal as a feature vector, it is more effective to use Hilbert trans-

formation of the EM radiation signals [95]. The advantage of this approach

is that, when calculating the correlation of two signals, Hilbert-transformed

vectors perform better than time-domain vectors for the same Signal-to-Noise

Ratio (SNR) of signals. As in their previous work with time-domain signals,

templates were generated for individual instructions running on a target de-

vice and these were used with a correlation-based classifier to detect when a

device was executing anomalous codes.

When using machine learning algorithms to detect patterns in time series

data, such as EM radiation, Recurrent Neural Networks (RNN) can play a ma-

jor role. An RNN is a specific type of neural network where the parameters

generated during one-time instance are reused as input to the network again

in consecutive time instance [97]. It enables the learning of patterns that oc-

cur in data sequences along the time domain. Wang et al. evaluated the

effectiveness of Long Short-term Memory (LSTM), a variant of RNN, against

traditional Multi-layer Perceptron (MLP) neural networks in classifying EM radi-

ation signals from various embedded devices [98]. They show that both MLP

and LSTM networks perform well in detecting the behaviour of the firmware

running on their target device. Meanwhile, Han et al. demonstrated the po-

tential of using LSTM networks in identifying control flow of Programmable

Logic Controllers (PLC) in industrial environments [92]. Their work indicates

that sliding window sampling of EM signals can be effectively used to track the

control flow of a program with sufficient resolution to identify malfunctions.

In addition to the time-domain signals and Hilbert-transformed signals, an-

other alternative format of representing EM radiation signals is using a Ra-

dio Frequency Distinct Native Attributes (RF-DNA) fingerprint. RF-DNA fin-

39

3.3. ELECTROMAGNETIC RADIATION AS A SIGNATURE

EM Sample
Acquisition

Calculate RF-DNA
Fingerprint

RF-DNA Fingerprint (Contains 3 Signal Characteristics)

Amplitude Phase Frequency

R(N+1).............. R(N)R1 R2

Each
Characteristic
Contains N+1

Region
Components

Standard-Deviation Variance Skewness Kertosis

Each Region Contains 4 Statistical Metrics

Figure 3.1: The RF-DNA fingerprinting process.

gerprinting is a technique to fingerprint the radio signals transmitted by var-

ious device families including WiFi, Bluetooth, Zigbee, GSM, RADAR an-

tennas, etc. This technique has been used to identify rogue devices in

a deployment through using their RF signals without physically inspecting

them [99, 100, 101, 102]. Deppensmith et al. showed that the RF-DNA tech-

nique can be reliably applied to unintentional EM radiation fingerprinting on

computing devices [103]. Lukacs et al. used Multiple Discriminant Analysis

(MDL) in order to reduce the dimensionality of RF-DNA fingerprints before ap-

plying them into a Maximum Likelihood (ML) classifier to identify known radio

transmitters used in radar systems [102]. Similarly, Bihl et al. showed that MDL

can help in identifying most important features from RF-DNA fingerprints [104].

However, the evaluations performed by Stone et al. on MCU-based IoT de-

vices indicates that further study is necessary to conclude the most reliable

format to represent unintentional EM signals [105].

40

3.4. ELECTROMAGNETIC RADIATION THAT LEAK INFORMATION

Figure 3.1 illustrates the structure of an RF-DNA fingerprint. When cal-

culating it, the EM signals emitted from a device on a selected frequency is

captured, filtered, and amplified appropriately to produce a clean trace. From

this acquired time-domain EM trace, the three signal characteristics; Ampli-

tude, Phase and Frequency, are separately considered for further processing.

Each signal characteristic is broken into N equally sized regions and then for

each region, four statistical metrics; standard deviation, variance, skewness,

and kurtosis are calculated. Furthermore, the signal itself is again considered

as a one entire region, i.e., the (N + 1)th region, to calculate the statistical

metrics. As Figure 3.1 illustrates, each of these calculated statistical metrics

are arranged in a single vector that becomes the RF-DNA fingerprint of the

originally acquired EM trace from a device.

3.4 Electromagnetic Radiation that Leak Informa-

tion

This section dives into the question of what information is contained in an

EM radiation trace of a particular computing system. From a digital forensic

perspective, the kind of software running on IoT devices and the data being

handled by each software application are potentially of significant interest. If

the EM-SCA cannot reveal all of data being handled by an IoT device plat-

form, extracting critical information, e.g., cryptographic keys, can progress the

forensic analysis.

3.4.1 Observable Electromagnetic Spectrum Patterns

While there exists a wide variety of MCUs used on IoT devices, Sohaib et

al. have shown that it is still viable to perform EM side-channel attacks on

them [106]. When considering information leakage from an EM radiation trace,

it has been shown that the simple visual observation of a trace can reveal a

significant amount of information for side-channel analysis. Visually inspecting

the time-domain signal in waveform is the first observational technique. This

41

3.4. ELECTROMAGNETIC RADIATION THAT LEAK INFORMATION

approach is called Simple Electromagnetic Analysis (SEMA), which evolved

from the SPA introduced by Kocher et al. [54]. The second way of performing

visual observations is by transforming the EM trace into the frequency domain

and plotting it as a spectrogram. This enables observation of different signal

patterns distributed over multiple frequencies.

Multiple publications have demonstrated the effectiveness of SEMA ap-

proach in extracting critical data from computers such as cryptographic keys

from the EM radiation. The El Gamal and RSA algorithms implemented us-

ing GnuPG library were attacked by observing critical CPU operations [107].

Furthermore, Elliptic Curve-based Cryptography (ECC) algorithms such as El-

liptic Curve-based Diffie Hellman (ECDH) and Elliptic Curve-based Digital Sig-

nature Algorithm (ECDSA) are identified to be vulnerable to EM side-channel

attacks with SEMA approach [108, 109, 110]. Due to the low computational

overhead in ECC algorithms, most mobile devices and IoT platforms employ

ECC algorithms to secure data. This indicates that such devices can be in-

spected through EM side-channels to access cryptographically protected data.

3.4.2 Differential Electromagnetic Analysis

Differential Electromagnetic Analysis (DEMA) – a variant of DPA – uses the

amplitude variation of EM radiation of a CPU to discover variables used in an

executing program, such as encryption algorithms [54, 55]. When a bit in a

CPU register is flipped from 0 to 1 or vice versa, it consumes an amount of

energy, which is reflected in the corresponding EM radiation amplitude. Some

CPUs may emit a higher EM signal when switching a register bit from 0 to

1 than vice versa since that operation can lead to a higher energy consump-

tion [17]. Due to this, when the content of a complete CPU register is modified,

it is possible to identify the hamming distance between the previous and new

state of the register using the resulting EM radiation. Since every instruction

running on a CPU affects the values on different registers, this means that

attackers can identify instructions being executed and intermediate variables

used based on the EM observation.

A variant of DEMA is Correlation Electromagnetic Analysis (CEMA) [56,

42

3.4. ELECTROMAGNETIC RADIATION THAT LEAK INFORMATION

Input Values

XOR Operation

Hypothetical Keys
(As a Vector)

EM Sample Acquisition
for Each Input Byte

Cross-Correlation
between Each Raw of

the Two Matrices

Select the Raw in
Hypo Matrix with

Highest Correlation
Hypothetical Key of that

Raw is the Real Key

(EM Data Sample
in Each Column) Sa

m
pl

e
Ti

m
e

Input Values

Real Matrix

H
yp

ot
he

tic
al

 K
ey

s Input Values

Hypo Matrix
(Hypothetical Key
in Each Column)

Real Key

Figure 3.2: EM analysis of XOR-Cipher algorithm to extract the encryption key.

57]. Figure 3.2 illustrates how a CEMA attack is used to identify the key of a

simple XOR-cipher. Initially, a large set of input data bytes and all the possible

key bytes are used to perform XOR-operations and the hamming distances of

the resulting values are stored in a matrix called Hypothetical Matrix, as shown

in Figure 3.2. The objective is to find the hypothetical key of the matrix that

generates matching hamming distances for the same input values. For this,

the input values are fed to the software running on the CPU where the XOR

operation is performed with an unknown key. EM radiation are sampled for

each input value to generate the Real Matrix, where each column contains a

EM signal sample for its corresponding input. Calculating cross-correlations

between rows of the two matrices can find the row in the Hypothetical Ma-

43

3.4. ELECTROMAGNETIC RADIATION THAT LEAK INFORMATION

trix that provides the best correlation of hamming distances. The hypothetical

key corresponding to this row is likely the encryption key used for the XOR

operation inside the CPU.

Standard encryption algorithms, such as DES and AES, employ XOR op-

erations at various stages in their functionality using chunks of the encryption

key and input data. Therefore, attacks of the type of DEMA and CEMA are

possible by attacking each chunk of the key being used with the XOR oper-

ations. Such an attack reveals parts of the encryption key, which have to be

combined at the end. However, in a real-world setting, the attacker may not

have enough EM radiation samples of the encryption operations to calculate

the correct part of the key used. This results in lists of possible key chunks

for each segment of the encryption key used in the algorithm. The problem of

identifying the correct parts of the key to build the complete encryption key is

called the Key Enumeration Problem which can be solved within a reasonable

computational overhead [111].

Quisquater et al. practically demonstrated that EM analysis is a viable op-

tion to the aforementioned power analysis attack on computer CPUs [112]. By

precisely moving the EM probe over an MCU, the authors were able to build

an accurate 3-dimensional EM signature of the chip running an idle loop. It

was shown that the radiation spectrum of each processor used in these ex-

periments were sufficiently unique to use as a distinguishable feature for pro-

cessor identification without applying an EM fingerprinting technique, such as

RF-DNA. These experiments were performed in a Faraday cage to minimise

external noise effects and the EM radiation were captured using a small mag-

netic loop antenna (diameter ≈ 3 mm). An oscilloscope digitised the signal for

analysis. Gandolfi et al. applied DEMA to extract encryption keys from three

different chips used on smartcards namely: COMP128, DES, and RSA [113].

According to their study, SNR of EM radiation from these chips is higher than

the SNR of power consumption analysis. Therefore, it leads to the extraction

of more information from the DEMA technique as compared to simple power

analysis attacks [114].

While the XOR operations are targeted as the weak point in many attacks

to DES and AES algorithms, it is not the only manner to successfully attack

44

3.4. ELECTROMAGNETIC RADIATION THAT LEAK INFORMATION

encryption algorithms. Asymmetric key encryption algorithms, such as RSA,

can be attacked by identifying the individual modular exponentiation opera-

tions performed within the algorithm through EM radiation [115].

Due to the modern electronic multimedia distribution model, e.g., the model

for distributing music, movies, and books, end-users can become the attackers

as well. These users might have the malicious intention of breaking encryption

or sharing Digital Rights Management (DRM) protected data. Since the vic-

tim device is completely under the control of the attacker in such a scenario,

unlimited physical access is available to the hardware and software through

various side-channel attacks. White Box Cryptography (WBC) was introduced

as a solution to this; whereby cryptographic algorithms and keys are com-

bined with random code and random data to create an obfuscation that makes

side-channel attacks more difficult. However, it has been shown that EM side-

channel attacks, such as DEMA, are still capable of extracting encryption keys

despite of the application of WBC techniques [116].

Recently, Camurati et al. made an important discovery, which extended

the previously known capabilities of EM-SCA of cryptographic operations on

IoT devices [58, 117]. It was shown that mixed-signal processors such as

SoCs, which contains a radio transceiver and a CPU on the same silicon die,

can cause long distance EM leakages. This occurs when the CPU noise gets

modulated into the radio transceiver’s radiation, extending the range of the

CPU EM side-channel. As the usage of SoCs is getting increasingly popu-

lar on IoT devices, this latest type of EM side-channel leakage, named as

screaming channels has hugely increased the potential attack surface.

3.4.3 Analysis of Wireless-powered Devices

Unlike traditional computing devices that have their own power sources to run

CPU operations, wireless-powered devices, e.g., passive RFIDs, depend on

an external RF field provided by the device’s reader for power [118]. IoT de-

vices are ideal candidates to be powered by wireless means. EM-SCA on such

devices is challenging due to the presence of a strong RF field from the reader,

since it obfuscates the weak EM radiation of the devices themselves. However,

45

3.4. ELECTROMAGNETIC RADIATION THAT LEAK INFORMATION

RFID-based devices are being used in critical systems, such as secure access

control to buildings and electronic payments, where cryptographic operations

are performed on-board to verify the authenticity of the RFID device. There-

fore, investigating the EM-SCA capability on such devices is important from

both security and forensic standpoints.

Hutter et al. demonstrated the capability to perform EM side-channel anal-

ysis on RFID-based devices using a custom-made RFID tag as a proof of

concept [119]. Using this custom set-up, the authors were able to recover

the AES key used in a challenge response protocol between RFID tag and its

reader. In order to avoid the disturbance from RF field of the reader device,

RFID circuitry was placed outside the reader’s RF field while power harvesting

antenna is kept inside the reader’s RF field. The two components were con-

nected through a sufficiently long wire. While this enabled the measurement of

the EM radiation from the RFID circuitry without interference, it is not possible

to follow a similar approach in a regular RFID tag. This is because the antenna

and RFID circuitry are inseparable by any reasonable means.

Kasper et al. performed EM-SCA attacks on RFID-based smart-cards in a

more realistic setting. Their research employed commercially available smart-

cards and performed the attacks within RF field of the RFID reader [120].

When the RFID smart-card is consuming more energy, amplitude of the RFID

reader’s RF field becomes lower. Meanwhile, when the RFID smart-card is

consuming less energy, the amplitude of the RFID reader’s field is higher. Ac-

cordingly, the power consumption of the RFID tag is reflected in the amplitude

of the RFID readers carrier frequency. Therefore, it is possible to observe two

side-bands around carrier frequency of the RFID reader reflecting this phe-

nomena. Kasper et al. used this signal as the side-channel to attack the inter-

nal operations of the RFID reader. A computer-controlled USB-oscilloscope

and a computer-connected custom-made RFID reader was used to attack an

RFID tag while capturing EM fluctuations using a small RF loop probe. This

set-up was used to perform a CPA attack to extract the symmetric keys used

in DES and 3-DES implementations on the RFID tag successfully.

Souvignet and Frinken suggested that power analysis attacks can be used

to extract data from smart-cards used by malicious skimmer devices as a

46

3.4. ELECTROMAGNETIC RADIATION THAT LEAK INFORMATION

method to identify victims in a forensic investigation. However, it requires

physically tapping into the device being investigated leading to potential inad-

vertent tampering of evidence [121]. A recent work by Xu et al. demonstrated

that RFID-based smart-cards that employ side-channel attack mitigation tech-

niques, such as head and tail protection, are not effective enough against

EM-SCA attacks [122]. In their work, encryption keys used for 3-DES algo-

rithm were demonstrated to be recoverable. In light of this attack vector, it is

important to note that wireless-powered IoT devices are also susceptible to

threats from EM-SCA-based attacks.

3.4.4 Countermeasures to Electromagnetic Side-Channel

Analysis

As EM-SCA has been shown to be successful on recovering data from com-

puting devices, various countermeasures have also been explored to counter-

act it on both software and hardware levels [75]. Masking variables by using

random values alongside the operations is a basic software-based counter-

measure, which has been proven to be not effective enough against EM-SCA

attacks [123, 124]. Various other approaches exist such as randomising the

operation sequences or lookup tables of algorithms [125, 126], avoiding in-

struction pairs executing adjacently that are known to emit distinguishable EM

patterns [80, 81], and accessing critical data using pointers instead of val-

ues [127]. These approaches require further studies to see how effective they

are against EM-SCA attacks.

Quisquater et al. suggests several hardware level countermeasures to

these attacks [112]. Actions that can be taken by hardware designers includes

minimising metal parts in a chip to reduce EM radiation, the use of Faraday

cage like packaging, making the chips less power consuming (which leads to

less unintentional radiation), asynchronism (i.e., designing the chips not to use

a central system clock and instead operate asynchronously), and the use of

dual line logic (i.e., using two lines that in combination of two bits represents a

state instead of a single line that simply represent 0 or 1 states). Furthermore,

it has been shown that it is possible to mathematically model an electronic

47

3.5. STANDARDS AND TOOLS

chip during the design phase to identify and avoid potential information leak-

ages through EM side-channels [128, 129].

3.5 Standards and Tools

The concerns from software perspective of EM radiation from IoT devices are

mostly concentrated towards wireless communication technologies such as

WiFi, Bluetooth, and proprietary IoT protocols, e.g., Zigbee [130, 131]. Mean-

while, the unintentional EM radiation minimisation is generally left to those

involved in the hardware design and manufacturing process. The term Elec-

tromagnetic Compatibility (EMC) refers to a device’s unintentional EM radia-

tion that can affect the functionality of other devices and the health of humans

who are exposed to it [53]. The Federal Communications Commission (FCC),

the Food and Drug Administration (FDA), the International Electrotechnical

Commission (IEC), and the European Union (EU) are examples of authorities

concerned with EMC regulation [132, 133]. However, regarding the question

of EM side-channel information leakage from general purpose electronic de-

vices, there are no such rules to govern the manufacturers. Instead, only

guidelines exist, which may or may not be followed [134, 135].

Once a hardware device’s design is completed and manufacturing com-

mences, it is a challenging task to apply mitigation steps if the EMC tests

reveal that it does not meet requirements. In the worst case scenario, the

minimisation of EM radiation may require a complete rework of the PCB used

in the device or a replacement of a critical electronic component. Due to the

potential for costly manufacturing disruption, the minimisation of EM radiation

needs to be ensured from the designing phase. Due to the fact that EM side-

channel information leakage is not a problem limited to the hardware manu-

facturers, a joint effort by both hardware and software developers is necessary

to establish standards.

In order to ease the job of information system security professionals to as-

sess side-channel vulnerabilities of embedded systems, it is necessary to have

tools. The Test Vector Leakage Assessment (TVLA) is a technique that can be

48

3.6. CURRENT DIRECTION

used to assess the resistance of cryptographic implementations against hard-

ware side-channel attacks [136]. TempestSDR is a software tool that can be

used with a large variety of hardware platforms, e.g., the Universal Software

Radio Peripheral (USRP) [79] or HackRF [41], to eavesdrop on computer mon-

itors by capturing the EM signals emitted by the video cables [137].

Multiple commercial and open source products exist that can be used to

break the encryption on MCU-based IoT devices. ChipWhisperer [138, 139] is

a widely used tool among security professionals and academic researchers to

perform cryptographic key recovery attacks. It consists of a collection of open-

source trace acquisition hardware and data analysis software components.

Similarly, Riscure Inspector [140, 141] is a fully fledged commercial product

that comes with software and hardware components to perform various power

analysis and EM-SCA attacks to embedded devices including smart-cards.

Blanco et al. presented a side-channel trace acquisition framework called

SCAP, which is targeted at general purpose computing devices (including mo-

bile devices). While the framework does not perform side-channel attacks cur-

rently, the objective is to provide a platform to build future analysis tools [142].

Such tools enable IoT system developers to test the robustness of their hard-

ware against physical side-channel attacks and identify information leakage.

While these tools are focused on information security objectives, this thesis

specifically focuses on the needs of digital forensic use cases. Therefore, it

combines a large collection of EM-SCA methods under a unified methodology

to acquire forensic insights from IoT devices.

3.6 Current Direction

With the current challenges in digital forensics and the state-of-the-art of EM-

SCA, it is important to identify the future potential impact for digital forensics

from these attacks. This section highlights some of the potential ways this

impact may occur in the future under several key themes. Many of these ap-

proaches are already starting to be realised and others are ambitious predic-

tions that can prove significantly beneficial.

49

3.6. CURRENT DIRECTION

3.6.1 Frequent Cryptographic Operations

While the increasing application of cryptographic protection on computing de-

vices poses a challenge to traditional digital forensics, it can open up new op-

portunities to EM-SCA attacks [10]. EM-SCA attacks require a large number

of traces acquired from a target device while the device is performing cryp-

tographic operations using a single key. It has been demonstrated that such

attacks are viable under laboratory conditions. However in most PC operating

systems, it is rare to find practical situations where an attacker can observe

EM radiation from a device for an extended period of time (since cryptographic

operations typically occur less often than in the laboratory experimental condi-

tions). The most common encryption occurring on many personal devices are

Secure Socket Layer (SSL)-based web traffic [143].

Encrypted storage is becoming commonplace in both desktop and mobile

devices. Recent versions of mobile operating systems, e.g., Android and iOS,

secure their internal storage using encryption. Critical information necessary

for digital forensic investigation can be inaccessible due to being stored in

an encrypted form [31, 144, 145]. This includes encrypted emails, encrypted

instant messenger applications, encrypted files, and encrypted storage par-

titions. However, it is highly likely that a mobile device is powered on when

seized by law enforcement. Access to encrypted file systems causes an in-

creased number of cryptographic CPU operations. Live data forensic tech-

niques can help to perform investigations on such devices [146]. However,

forensic investigators often encounter powered on, but locked, devices. As

long as the device is reading and writing to the encrypted storage, EM radia-

tion should reflect the cryptographic operations on the device. Therefore, an

attacker can straightforwardly force the victim device to perform cryptographic

operations in order to acquire side-channel traces for key extraction.

3.6.2 Combined Side-Channel Attacks

Instead of using a single side-channel attack in isolation, combinations of

multiple side-channel attacks directed towards a single computer system can

50

3.6. CURRENT DIRECTION

prove more fruitful. It has been proven that power and EM-SCA can be com-

bined to achieve better results [76]. There can be some operations of the CPU

that are more clearly reflected in the device’s power consumption than in the

EM radiation and vice versa.

Sometimes, combining conventional attacks, e.g., spyware and worms,

with EM-SCA attacks can provide new kinds of compound attacks that are

difficult to counteract. For example, malware running on a victim computer

can aid an EM-SCA attacker to extract additional information over the EM

side-channel alone. This can be achieved through running specially selected

instruction sequences on the CPU to intentionally emit encoded EM signals.

Yang et al. [147] illustrated a mechanism to intentionally modulate EM radiation

of electronic and electro-mechanical devices to exfiltrate data from the device

to an external receiver. This hints at the potential for employing these uninten-

tional EM side-channels to intentionally and covertly transmit data wherever

necessary.

There are two potential avenues for malware assisted EM-SCA attacks.

Firstly, malicious JavaScript can be embedded in a website, using Cross-site

Scripting (XSS) or otherwise, and read the contents of a user’s screen and

encode that information into deliberate CPU EM radiation. Furthermore, TEM-

PEST style attacks on computer monitors can be combined with other attacks

to increase the attack surface for air-gapped computer equipment [148]. For

example, malware running on a target computer could read local files and

encode that information into the computer’s video output. Image steganogra-

phy techniques can be used to hide the encoded data from the human user’s

view [149]. Meanwhile, a TEMPEST style attack can be performed on the

computer’s monitor in order to extract the video frames ultimately leaking data

to the attacker.

3.6.3 File Signatures

Many types of digital multimedia content including images, audio, and video

files are stored in a compressed format for the efficient storage and distribu-

tion [150]. As a result, when a computer starts playing an audio/video file in a

51

3.6. CURRENT DIRECTION

specific format, e.g., MPEG-2 Audio Layer III, AAC, MPEG-4, etc., or attempts

to display a compressed image format, e.g., JPEG, GIF, etc., corresponding

decompression software has to process the content. Since the software’s exe-

cution path will be governed by the media file content, the instruction execution

sequence will also depend on the media file. Therefore, it is possible that the

CPU might emit EM patterns unique to a specific file being handled. This could

potentially lead to the ability to identify the files being handled by a device.

While there have been attempts to make EM radiation signatures for hard-

ware devices and specific software running on them for profiling purposes,

such as RF-DNA technique [103], the possibility of profiling specific media

files using the EM radiation caused by them is a potential avenue for the fu-

ture exploration. Searching for a known file, such as known illegal content,

in a target device is a challenge that the digital forensics community has been

attempting to solve in efficient and effective ways because the manual compar-

ison is often overly arduous for the expert investigators [151]. When a device

is handling a file, passive observations of EM radiation can help to profile the

file being handled by the device. This can be later be compared with a known

set of file signatures to confirm the access or processing of a specific file on

the target device.

3.6.4 Packet Analysis of Network Devices

There are a wide variety of special purpose computers being used in various

specialised application environments including network routers and switches.

There can often be an operational need to investigate a live network. In such

cases, it is necessary to run network analysis software tools on specific in-

terfaces at host computers [152]. Analysing the network solely based on the

traffic going through routers and switches in order to observe live events is a

challenging task. In such situations, the EM radiation of routers and switches

are able to provide an approximate picture of the workload and traffic on the

network [153]. It has been shown that EM radiation observed from Ethernet

cables can lead to identifying the MAC addresses of the frames being handled

by the networking devices [154]. In that demonstration, attackers has used a

52

3.6. CURRENT DIRECTION

technique similar to SEMA.

When IP packets are being switched at routers, the router has to update

certain fields in the packet including TTL and the header checksum. After

updating these fields, the router forwards the packet to the relevant network

interface. If the EM radiation patterns of the router forwarding a packet to

an interface and processing a packet are distinguishable, there are opportuni-

ties to perform interesting analysis on routers by observing their EM radiation.

Packets that contains a specific payload, such as malware that comes from

or addressed to a specific host, and network based attacks, e.g., Denial of

Service (DoS) attacks, can be identifiable. Similarly, an attacker could gather

EM radiation from a router to eavesdrop on the data being delivered through

a wired network. Such possibilities are important from a digital forensic per-

spective when network analysis tools cannot be attached to a live system for

analysis.

3.6.5 Easy Access to Electromagnetic Spectrum

EM-SCA attacks traditionally involve expensive hardware including RF probes,

oscilloscopes, spectrum analysers, and data acquisition modules. Such de-

vices are mostly used in EM-insulated laboratory environments. Moreover

the configuration and operation of these devices require specialised domain

knowledge. Information security specialists and digital forensic analysts might

not have access to such hardware and might not posses the specialised knowl-

edge required for their operation. While hobbyist attempts have been made to

build such tools for lower costs, such efforts come with a penalty of lower

precision and accuracy. This situation places a significant barrier to the wide

adoption of EM-SCA.

Recent advancements in SDR hardware enable new opportunities for ac-

cessing radio spectrum for non-specialists. Affordable SDR hardware and

freely available software libraries can be used to process and decode vari-

ous wireless communication protocols. The ever-increasing processing power

and memory capacity on personal computers supports the use of SDR soft-

ware tools at high sample rates. EM-SCA attackers have recently started to

53

3.6. CURRENT DIRECTION

use SDR tools as a more affordable alternative to the expensive RF signal

acquisition hardware. Following this trend, digital forensic analysis should be

possible through the leveraging of EM side-channels detected on SDR-based

hardware and software platforms.

3.6.6 Backscatter Channels

The unintentional EM radiation from computing devices can cause interfer-

ence to other radio signals in the vicinity. This phenomena is evident in lap-

top computers which have been shown to modulate signals from commercial

AM radio stations [155]. IoT devices already use this interference phenom-

ena to communicate purposefully with other devices by modulating the ambi-

ent RF signals, which is called backscatter communication technology [156].

There are various carrier wave sources that have been tested in the liter-

ature for this purpose, such as TV transmission stations and WiFi access

points [157, 158, 159, 160]. The potential of using this backscatter phenom-

ena to eavesdrop on internal CPU operations of IoT devices by listening to

ambient RF sources needs further exploration.

3.6.7 Advancements in Machine Learning

Recent advances that have been made in the area of Artificial Intelligence

(AI) have demonstrated promising applications to many other domains across

computer science. Various tasks where human intuition was required to per-

form decision making are now being replaced with machine learning and deep

learning based algorithms. Software libraries and frameworks are becoming

increasingly available in order to assist the building of applications that have

intelligent capabilities. Examples include the automated detection of malicious

programs [161], image manipulation [162], and anomaly detection in network

traces [163].

EM-SCA techniques, such as SEMA and spectrogram pattern observa-

tions, that previously required human intervention can be automated through

the development of AI algorithms. Wang et al. [98] applied deep learning al-

54

3.6. CURRENT DIRECTION

gorithms such as MLP and LSTM to detect anomalies in the code of sim-

ple IoT devices such as Arduino and Raspberry Pi through the power con-

sumption side-channel. Therefore, it can be possible to extract better in-

formation from EM traces than the current manual observations are capa-

ble of achieving. Several examples that were discussed in previous sec-

tions already leverage AI techniques to recognise EM trace patterns, which

strongly hints the future role ML algorithms can play in EM-SCA for digital

forensics [85, 164, 90, 91, 96, 105, 165].

55

Chapter 4

Methodology: The Birth of

EMvidence

4.1 Introduction

The high-level problem tackled by this research is enabling digital forensics of

IoT devices through their EM side-channel radiation. Towards this goal, three

research questions were identified that need to be addressed to solve the chal-

lenge of forensic insight gathering from IoT devices. First of all, a question was

raised whether machine learning methods can be used to extract forensically-

useful insights from such devices. Secondly, a question was raised regarding

the efficiency of such ML-based insight-gathering methods as it is an absolute

necessity to make such methods usable in practical digital forensic scenarios.

Thirdly, the attention was drawn to the diverse and dynamic nature of IoT de-

vice ecosystem and the challenge it poses to manage the methods that are to

be discovered to gather forensically-useful insights.

A careful reasoning between the three research questions highlights that

the methods to gather insights and to do it efficiently will not be so useful

if they are targeting a limited set of IoT devices, which will be obsolete in a

few years time. Therefore, the long-term success of the answers to first and

second research questions directly rely on a sufficient answer for the third

research question on managing diversity and dynamism. Considering this im-

56

4.2. A CASE STUDY SCENARIO

portant correlation between the research questions, the solutions presented

in this thesis, first of all, draws a high-level outline of a model to tackle third

research question. Based on this model, a software framework is designed

and implemented. Later, this thesis moves on to address the first and second

research questions by implementing and testing methods that are integrated

into the aforementioned software framework eventually.

The rest of this chapter is organised as follows. Section 4.2 discusses

the need for a EM-SCA-based forensic investigation model using an example

scenario where the requirements that should be met by such a model are il-

lustrated. Section 4.3 details the proposed model for EM-SCA-based forensic

investigation. Section 4.4 presents the design and the implementation of a

framework called EMvidence, which is based on the proposed model. The

plug-ins of the EMvidence framework are further detailed in Section 4.5. The

procedure of EM data acquisition from IoT devices were illustrated in Sec-

tion 4.6. Finally, Section 4.7 briefly highlights the experiments presented in the

following two chapters using the EMvidence framework.

4.2 A Case Study Scenario

Investigating an Arson Attack:

Consider a fire warning system deployed inside a research laboratory1. The

device is designed to run independently without communication with the out-

side world most of the times. Its firmware is programmed to run by transferring

between a predefined set of states. Figure 4.1 illustrates the state machine

of the device firmware. The device remains powered up continuously. It can

be powered off only by physically opening its casing and turning an internal

switch, which is protected by a physical lock. Therefore, shutting the fire warn-

ing system off is only possible for personnel with proper credentials.

The device firmware basically has 5 internal states when its up and run-

ning. Initially, it stays on Smoke Detection state, where it keeps reading a

1This application is inspired by real-world smart fire warning systems, such as Google’s
Nest Protect – https://store.google.com/ie/product/nest_protect_2nd_gen.

57

https://store.google.com/ie/product/nest_protect_2nd_gen

4.2. A CASE STUDY SCENARIO

Off

Device On

Manual_Disable

Smoke DetectionFire_Detected

Door_Unlocked

Door Unlocking

Text_SentSend Text
Message

Reset

Fire the Alarm

Reset Idle

Figure 4.1: State machine of the IoT fire warning system’s firmware.

smoke detecting sensor input. Whenever a potential fire is detected, the de-

vice sends a message to the smart door lock in the research laboratory to

unlock the door so that any people inside the premises can escape to the out-

side. Then, the device sends a text message to a predefined person to notify

the incident, i.e., Send Text Message state. Finally, the device moves to Fire

the Alarm state where it remains firing an alarm. From here, the device can

be turned back to Smoke Detection state by pressing a reset button. Fur-

thermore, pressing another button, the device can be switched to Idle state

where the device does nothing but stands on alert for any further moves from

the user. The device does not keep records of its internal activities locally or

remotely in any form, other than the text message it sends out to notify a fire.

Consider law enforcement entering into the research laboratory due to a

report on a fire in the building. The firefighters have already diffused the fire.

According to their report, the fire warning system has not been ringing when

they arrive at the scene. They assume that a fault in the IoT device has pre-

vented it from ringing. The authorised person who was supposed to receive a

notification via a text message has not received it either. However, there is a

suspicion that an insider who is knowledgeable about the IoT device has dis-

abled the device, placing it into Idle state before performing an arson attack.

An important piece of clue to answer the mystery is hanging on the volatile

58

4.2. A CASE STUDY SCENARIO

memory of the IoT device firmware.

The Current Approach:

As IoT devices are usually designed to be always on, it is highly possible

to have a seized IoT device still operational. Before attempting to acquire

any non-volatile storage data physically from the device, the device must be

switched off in order to prevent any physical damage to the data. The longer

the device is running, the higher the risk of contaminating device data. If the

device is connected to the network, it can potentially receive remote com-

mands to wipe its internal storage. Therefore, following the usual practice,

the investigators take the fire warning device into custody, turn the device off,

and transfer it to a digital forensic laboratory for inspection [166]. If the device

stores data that are not encrypted and the device has a standard interface,

the data can be extracted using existing forensic evidence acquisition meth-

ods [167]. This particular IoT device lacks these standard interfaces, forc-

ing investigators to take more risky approaches, such as chip-off forensics.

Mistakes during such operations could inadvertently destroy the device itself.

However, since the device in question in this particular scenario does not store

any useful information, nothing of useful value to the investigation can be found

from the device at the end.

The Ideal Approach:

Upon arriving at the scene, the investigators should be able to recognise IoT

devices available in the surrounding environment. Once the IoT device that

belongs to the intruder detection system is noticed, the make and model of

the device must be identified by visual inspection. The next step should be to

operate a portable system closer to the target IoT device in order to pick EM

radiation from the device and analyse it immediately to produce a report. The

analysis should be able to recognise the firmware running on the device and

the current status of it. If the analysis revealed that the device is currently in

the Idle state, that indicates that someone from the inside of the building has

59

4.2. A CASE STUDY SCENARIO

Current
State?

Start

Idle Smoke
Detection

Potentially an
Insider Involved

Incident
Faulty Device or

Someone Reset It

Figure 4.2: Reasoning with the information of IoT device firmware internal state.

disabled the fire detection system, pointing to an insider job. If it was found

that the device is in Smoke Detection mode, that can point to two possibilities.

It is either the system never detected the occurrence of fire due to a technical

fault or someone has reset it when the alarm started to ring. In such a case,

evidence from other sources such as testimonies from neighbours can help to

verify whether anyone actually heard the alarm ringing even for a brief period

of time.

Manually switching the device to Idle state means, an insider who knows

the presence of the system carried out the arson attack. Causing the system

to trigger first and then resetting it later indicates that the criminal was not an

insider as they were not aware of the presence of the system (see Figure 4.2).

The insights gathered from the EM-SCA of the fire detection system combined

with other sources of evidence can finally point to uncover the mystery of the

arson attack – whether the criminal was an insider or an intruder. Some similar

systems may even contain certain internal flash storage that may leave non-

volatile clues about the behaviour of the system. Due to the unavailability of

standard interfaces to the system, inspecting the flash storage by performing a

chip-off can be a viable option as well. However, even when chip-off forensics

is being considered, it may be a good approach to first try an EM-SCA inspec-

tion on the device to gather as much information as possible before attempting

a chip-off.

60

4.3. A FORENSIC MODEL FOR INTERNET OF THINGS

IoT Forensic
Investigation

Forensic Requirements IoT Devices to be
Inspected

Planning for EM Data
Acquisition & Analysis

Phase 1
(Preparation)

Acquiring EM Data

EM Data

Identification

Building EM-SCA Methods

Phase 2
(Analysis)

Reporting Results
Forensic
Insights

Executing EM-SCAEM-SCA Methods

Figure 4.3: A forensic model for IoT forensics using EM-SCA methods.

4.3 A Forensic Model for Internet of Things using

Electromagnetic Side-Channel Analysis

Due to the potential existence of a variety of EM-SCA methods to acquire

forensic insights from a large diversity of IoT devices, the complexity of the

task demands a standard procedure for investigators [10]. Therefore, this work

proposes a new EM-SCA-based IoT forensics model as depicted in the Fig-

ure 4.3. The proposed model organises the EM-SCA-based IoT investigation

procedure into two main phases at a high-level. The first phase focuses on

the identification and the preparation of necessary environment, including the

requirements, the IoT devices, the EM data acquisition equipment, etc. The

second phase focuses on the data acquisition and analysis to uncover forensic

insights. The components of the proposed model are described in the follow-

ing series of subsections.

61

4.3. A FORENSIC MODEL FOR INTERNET OF THINGS

4.3.1 Identification of Requirements

At the beginning of an investigation, the first task is to identify the forensic

requirements of the investigation. These requirements depend on the exact

scenario of the incident being investigated. For instance, in the scenario dis-

cussed in Section 4.2, the major requirement is to uncover whether someone

intentionally caused the fire in the building, i.e., an arson attack.

The next important task is the identification of IoT devices available to the

investigator. When such an IoT device can fulfill the forensic requirements

identified previously, it should be counted as a device for EM-SCA. In the sce-

nario discussed in Section 4.2, the question whether someone intentionally

caused a fire in the building can be converted to the question whether some-

one intentionally disabled the IoT fire warning system. This question can be

answered by detecting the internal state of the IoT fire warning system using

EM-SCA methods.

4.3.2 Planning for Data Acquisition and Analysis

Having identified the forensic requirements and the IoT devices that can fulfill

those requirements, the investigator can now plan the data acquisition pro-

cedure accordingly. Multiple decisions have to be made during this planning.

From the perspective of methods, it is necessary to decide which EM-SCA

methods should be applied to acquire the identified forensic insights. From

the perspective of hardware settings, the exact frequency of acquiring data,

the positioning of the antenna, i.e., both its location and its height over the IoT

device, and the duration of EM data acquisition have to be decided.

It is recommended to equip the investigators with a checklist that can ease

this decision-making process and release the investigator from having domain

expertise on EM-SCA. For example, the recommended EM data acquisition

settings for a particular IoT device type, such as frequency of the radiation,

sample rate, positioning of the antenna, etc., should be included in such a

checklist, which can be directly followed by the investigator. Whenever new

EM-SCA methods are developed to inspect the IoT devices, such checklists

62

4.3. A FORENSIC MODEL FOR INTERNET OF THINGS

should be provided along with the new methods.

4.3.3 Building New Analysis Methods

In certain cases, the investigators may come across requirements that cannot

be fulfilled with the existing EM-SCA methods. Similarly, the investigators may

come across new IoT devices that are currently not supported by the existing

EM-SCA methods. In such situations, it is important for the investigators to

properly document such new requirements in order to be addressed in the

future. The research community can develop or improve EM-SCA methods

based on these documented requirements. For the continuous applicability of

EM-SCA in IoT forensics, such regular improvements and research are vital.

4.3.4 Acquiring Electromagnetic Data

With this step, the investigator enters the second phase of the EM-SCA foren-

sic model. The EM data acquisition procedure should be carried out according

to the plan prepared previously. If there is a possibility, a portable shielded en-

vironment, i.e., a Faraday cage, should be used to prevent the contamination

of EM data from external noise. A careful documentation of the hardware set-

tings and the procedure followed is necessary during this stage. The insights

gained and the conclusions arrived at the end can be questioned and chal-

lenged based on such details, or the lack of them.

4.3.5 Executing Electromagnetic Side-Channel Analysis

Once the EM data have been acquired, the analysis should be conducted

using the EM-SCA methods decided at the planning stage. If the outcome

of the analysis can be used to conduct subsequent forensic analysis using

IoT devices, it would be necessary to perform EM-SCA on-the-spot. In other

cases, the data analysis can be conducted later in a forensic laboratory. When

applying EM-SCA methods to analyse EM data, it is important to use well-

recognised implementations of the methods. Just like any other digital forensic

63

4.3. A FORENSIC MODEL FOR INTERNET OF THINGS

Identifying Devices

Start

Planning for Data
Acquisition

Identifying the
Requirements Acquiring EM Data

Executing EM-SCA

Reporting Results

Archive & Storage

Identifying New
Requirements

Developing/Improving
EM-SCA Methods

Pre-Analysis Analysis Post-Analysis

Figure 4.4: A potential investigative workflow that follows the proposed forensic
model.

tool used in investigations, the recognition of the EM-SCA tools used in this

phase is highly important.

4.3.6 Reporting Results

At the end of the analysis of EM data, the findings should be reported in a

format acceptable in the legal context. It is necessary to report the exact hard-

ware settings and procedures followed to acquire EM datasets in detail along

with the outcome of each EM-SCA method applied. Some of the outcome of

the analysis can be direct court-admissible evidence while many others can

be forensic insights useful to the investigators to make further investigative

moves.

64

4.4. THE EMVIDENCE FRAMEWORK

4.3.7 Overall Workflow

While there are many activities included in the proposed model, a typical in-

vestigation can follow a sequential workflow as depicted in Figure 4.4. The

process begins with the identification of forensic requirements and the IoT

devices. Based on these information, the investigator can plan the data ac-

quisition and analysis procedure in detail. After the planning, the EM data

acquisition, the analysis and the reporting of results can be conducted. Fi-

nally the post-analysis activities includes the storage of investigative data, the

identification of requirements, which could not be met with existing EM-SCA

methods and the implementation of those identified new EM-SCA methods for

the future use.

4.4 The EMvidence Framework

Compared to the conventional digital forensic methodology, the proposed

model differs in two important aspects [4]. Firstly, the data acquisition and

analysis steps of the proposed model are designed to be executed immedi-

ately after a device is found at the triage examination, whereas the conven-

tional forensic data acquisition and analysis mostly occur at a forensic labora-

tory. Therefore, these steps are intended to be executed by non-expert law-

enforcement officers at crime scenes instead of highly trained digital forensic

investigators at laboratories. Secondly, the proposed model adds an emphasis

to the identification of new forensic requirements and the development of new

methods to cater them. Unlike the conventional forensics, this is important in

EM-SCA forensics as the IoT devices and their requirements rapidly change.

The real-world application of the proposed EM-SCA-based IoT forensics

model depends on tools that facilitate its successful execution. Especially, the

data acquisition and the analysis steps in the proposed model raise difficulties

to investigators due to the diversity and dynamism of the IoT ecosystem – as

pointed out by the third research question of this thesis. In order to meet the

requirement, a framework called EMvidence was designed. In the design pro-

cess, in order to keep up with the diversity and dynamism of IoT ecosystem,

65

4.4. THE EMVIDENCE FRAMEWORK

EMvidence Framework

Forensic
Insights

(1) Selecting an IoT
Device

(2) Acquiring EM Data

(3) Applying
Analysis Plug-ins

EMvidence Core

Plug-in A

Plug-in B

Plug-in E

Plug-in D

Plug-in C

Enabled
Plug-in

Disabled
Plug-in (4) Generating Report

Figure 4.5: Major functional components of the EMvidence framework and their in-
volvement in the workflow of analysing an IoT device.

Unix philosophy was adopted [20]. According to the Unix philosophy software

systems need to be modular where each module is independent from the rest

of the system. A module is specialised and optimised in doing one thing and

one thing only in the most efficient way. This enables the easy and efficient

maintainability of the entire system – a requirement to change or entirely re-

place a component does not affect other components of the system.

Regardless of the type of IoT device being analysed and the nature of the

forensically-useful insight being unveiled, there are two important functionali-

ties required by the framework that are common to all types of analysis. The

first is capturing EM radiation from a DUT with appropriate settings of an SDR

hardware. Secondly, the framework need to produce a report based on the

analysis of the EM radiation data that is comprehensive enough in forensic

contexts. Due to the independence of these two functionalities from the spe-

cific EM data analysis procedures, they are included as default functionality

of the framework. Meanwhile, each piece of data analysis functionality is dis-

tributed into independent plug-ins. Figure 4.5 illustrates the major functional

components of the EMvidence framework and their involvement in the work-

66

4.4. THE EMVIDENCE FRAMEWORK

flow of analysing an IoT device. These framework components are explained

in detail in the following subsections.

4.4.1 Data Acquisition Component

One of the default components of the EMvidence framework is the facility to

acquire EM data from IoT devices. When acquiring EM data from a device,

multiple parameters are necessary: the centre frequency of the radiation, the

best position on the device to capture the radiation, sample rate, and the du-

ration of the data acquisition. Section 4.6 details the procedure to determine

these parameters. Whenever a new IoT device is supported by the framework,

these parameters should be determined and embedded into the framework so

that the investigators can straightforwardly use those parameter settings when

dealing with an IoT device under investigative conditions. The EM data ac-

quired by the EMvidence framework are stored in I/Q data format regardless

of the specific hardware equipment used to acquire them [49]. By doing so,

EM-SCA methods that perform data analysis can access and process the data

uniformly.

4.4.2 Report Generation Component

The second default component of the EMvidence framework is the generation

of reports based on the EM-SCA of acquired EM data. The results of EM-

SCA can be in both graphical and textual format. Graphical results include

the visualisation of interesting findings from the EM data such as a confusion

matrix depicting the EM signal classification results. Textual results includes

numerical values such as classification accuracy of a given EM dataset. All

these analysis results from a particular EM dataset are combined along with

the details of the EM dataset itself into a single report. The report produced

by an analysis of an EM dataset can consist of both direct court-admissible

evidence and forensic insights that can assist in further stages of the forensic

investigation.

67

4.4. THE EMVIDENCE FRAMEWORK

4.4.3 EMvidence Core

The core of the EMvidence framework is responsible for the management

of individual components: the data acquisition component, report generation

component and the collection of plug-ins. A plug-in in EMvidence is an imple-

mentation of a unique EM-SCA method targeted at acquiring a specific type

of forensic insight from a specific type of IoT devices. A large collection of

plug-ins are necessary to support the diversity of IoT device ecosystem. New

plug-ins should be implemented regularly to facilitate the dynamism of IoT

ecosystem whenever a new type of IoT device enters the market and draw the

attention of forensic community. The EMvidence core facilitates the user firstly

to acquire EM data using data acquisition component and secondly to select

a set of plug-ins, which should be used to analyse the acquired EM dataset.

Once selected, the EMvidence core individually activates each plug-in to pro-

cess the data and retrieve the output produced by each of them. Finally, the

produced results are directed to the report generation component to compose

final analysis report.

As it is evident, the EM-SCA capability of the EMvidence framework relies

on the methods implemented as individual plug-ins. The functionality of plug-

ins are described in detail in Section 4.5 along with the procedure to construct

them.

4.4.4 Implementation Details

The EMvidence framework was implemented using Python language that pro-

vides many advantages. When accessing SDR hardware tools, it is necessary

to use a well supported software library. GNU Radio, as a free and open-

source library that supports almost all the SDR hardware currently in use, is

the ideal choice for this purpose [47]. While the core parts of GNU Radio

is implemented in C++ language to maintain high performance, its function-

alities are wrapped to support Python language. Therefore, the EMvidence

implementation benefits from a smooth integration to GNU Radio in the same

language. When processing EM data on the EMvidence, a multitude of Python

68

4.4. THE EMVIDENCE FRAMEWORK

Figure 4.6: The output on the Bash terminal when running EMvidence.

libraries are used, such as numpy and scipy [36]. The visualisation of EM data

was performed with the help of matplotlib library. The framework was imple-

mented on GNU/Linux operating systems. However, due to the use of Python

language and libraries, porting EMvidence to work on other operating system

platforms can be straightforward.

The GUI components of the EMvidence framework are implemented using

the Flask library, which is a framework to build web applications. The source

code of the EMvidence framework and its associated plug-ins are available

at a Github repository2. Currently, the repository provides a few plug-ins to

demonstrate the API facilities. Plug-ins that are aimed at real-world IoT de-

vices will be added to the repository in the future. Furthermore, the framework

facilitates future research and development of EMvidence plug-ins by third-

parties. Figures 4.6 depicts the start of the EMvidence GUI by running a shell

script, i.e., start.sh, on the Bash terminal. The EMvidence GUI currently

facilitates capturing EM data and analysing them to produce reports. Further-

more, EM traces captured using external means other than the EMvidence

framework can be uploaded into it as well (see Figure 4.7). Once the data are

analysed using one or more modules a comprehensive report is produced, as

2https://github.com/asanka-code/EMvidence

69

4.4. THE EMVIDENCE FRAMEWORK

Figure 4.7: Analysing an EM trace using the EMvidence.

shown in Figure 4.8, that can be downloaded.

In traditional digital forensics, the data acquired from devices under inves-

tigation are handled in a forensically sound manner in order to ensure the

court-admissibility of evidence[4, 10]. For example, when a disk image is ac-

quired from a computer, cryptographic hash values are calculated and stored

alongside the disk image. The hash values can later be used to verify the

integrity of the disk image. Similarly, EM traces acquired from IoT devices

has to be stored with a hash verification facility. The EMvidence framework

supports hash calculation for EM traces acquired in real-time and stores them

along with the traces. However, the patterns of the EM signals from an IoT

device depends on its current internal states and external noise sources in the

vicinity. Therefore, hash values are useful only to maintain the integrity of the

originally acquired EM traces during subsequent analysis.

70

4.5. PLUG-INS FOR EMVIDENCE

Figure 4.8: A report generated by EMvidence after analysing EM data from a device.

4.5 Plug-ins for EMvidence

As evident from the high-level architecture of EMvidence, the capability to

analyse and gather a multitude of insights from IoT devices relies on the avail-

ability of plug-ins. A plug-in in EMvidence is intended to uncover a specific

insight from a specific type of IoT devices using the EM data provided by the

EMvidence core. In order to achieve that goal, it can be developed to use

its own EM data processing and analysis methods. Within the scope of this

work, EM-SCA methods that use ML techniques are considered and there-

fore, EMvidence plug-ins can use ML-based EM-SCA methods for gathering

forensic insights [98, 164, 165].

4.5.1 Plug-in Behaviour

Figure 4.9 illustrates how a plug-in interacts with the core framework when

trying to analyse an EM dataset. Once the EM radiation of a DUT is captured,

71

4.5. PLUG-INS FOR EMVIDENCE

waveform.png psd.png spectrogram.png results.txt

Result Files

Call Module

Read Results
Back

ml-model.joblibEM Trace Files

Resources

Pre-process EM
Traces

EMvidence Plug-in

Produce Graphical
Visualizations

Produce Machine
Learning

Predictions

EMvidence Core

Figure 4.9: A plug-in being called by the EMvidence framework’s core.

the user of EMvidence selects the set of plug-ins that should engage with the

data. When a particular module is called, it is provided with access to the EM

data that need to be analysed. Upon being called, a plug-in usually preprocess

the input EM data files according to its needs. The preprocessed data can be

used to produce two types of output from a plug-in. The first is graphical

results that can be visualisations of the analysis. The second is textual results

that are usually numerical values produced by ML-based analysis. Trained

72

4.5. PLUG-INS FOR EMVIDENCE

SDR Device

USB

USB / UART

Host
PC Running

EMvid
en

ce

EM Sample Flow

Contro
l

Commands

& Feedback

setup()

idle()

uart_irq()

task()

test() DUT

Instrumented
Firmware

Figure 4.10: Instrumented and controlled EM signal acquisition.

machine learning models that are shipped with the plug-in can be used to

produce the latter. The graphical results are individually written into image

files in PNG format while textual results are written to a text file with UTF-8

text format. After the plug-in completes its analysis and produce result files,

EMvidence core reads the produced result files and uses them to compose

the final analysis report.

4.5.2 Plug-in Development

When developing a new plug-in for the EMvidence framework, two decisions

have to be made initially. The first is the type of IoT device that will be con-

sidered as the DUT. The second is the precise forensic insight that should be

identified by inspecting EM radiation data of the DUT. In order to capture a

sufficient EM radiation dataset, a representative DUT is taken and EM data

are acquired from it. The EM data acquisition capability of EMvidence is used

for this purpose.

Depending on the nature of the DUT and the intended insight that should

be retrieved, there are two potential approaches to acquire EM data to build a

73

4.5. PLUG-INS FOR EMVIDENCE

plug-in. The first approach is observing the device entirely passively. This is

useful in situations such as identifying a known version of a device firmware

or detecting modifications to firmware. The second approach is capturing data

from an instrumented DUT. In situations where it is possible to simulate a par-

ticular type of IoT device using a prototyping platform, such a platform can be

used to acquire EM data with active manipulations during EM data acquisi-

tion. Figure 4.10 depicts such a situation where the DUT is connected to the

host computer running EMvidence. By sending control commands through

the USB/UART port, the DUT firmware can be placed onto different internal

behavioural states in order to capture EM data samples for each behaviour of

the device.

Once the EM data are acquired, the development of code to process and

train an ML model can be done. The EMvidence framework provides an API

with functions to facilitate this task. The developer of the plug-in can make use

of these facilities depending on the forensic insight aimed to acquire from the

EM dataset. This phase of the work produces two outputs. The first is soft-

ware code implementation of data processing functionality. The second is the

trained and tested machine learning model. Therefore, a plug-in is essentially

a package of the following components.

Machine Learning Model: For EMvidence plug-ins that uses ML methods

to extract forensic insights from EM data, a trained ML model should be en-

closed in the plug-in package. Trained models saved in joblib format can be

used for this purpose, e.g., ml-model.joblib.

Python Scripts: One or more Python scripts that implement certain func-

tions, which will be called by the EMvidence core should be included in the

plug-in package. EMvidence can invoke the plug-in and retrieving the results

generated by it using these Python scripts. The code within this script will pro-

cess an EM trace given to it and use an appropriate method to extract forensic

insights, such as using the enclosed machine learning model to make predic-

tions. It will finally produce the graphical and textual results as files.

Configuration File: A configuration file, which will be read by the EMvi-

dence framework should be included in the plug-in package. The configura-

tion file contains the details that are necessary to successfully integrate a new

74

4.5. PLUG-INS FOR EMVIDENCE

(1) Use a
Representative IoT

Device

(2) Acquire Labeled
EM Traces

plugin.zip readme.txt ml-model.joblibmain.pyconfig.config

(3) Preprocess
EM Traces

(4) Train and Test an
ML Model

(5) Package the Plug-in

EMvidence API Facility

New Requirement

Forensic Insight
RequiredDevice to Support AccuracyEfficiency

Must Ensure:

Figure 4.11: The workflow of creating a plug-in for EMvidence.

plug-in with the core of the EMvidence framework.

Readme File: A text file should be included in the plug-in package that

contains any useful information to the end-user of the plug-in. The user can

refer to the readme file of a new plug-in before adding it to the framework in

order to ensure that the plug-in provides the expected functionality.

Once these files are prepared, they are packaged into a single compressed

file. After that, the plug-in can be distributed. A potential user can upload the

compressed package into the EMvidence framework so that the framework’s

plug-in management system can extract and integrate it into the existing col-

lection of plug-ins. Figure 4.11 depicts the entire process of creating and pack-

aging a plug-in for the EMvidence framework.

75

4.6. PROCEDURE FOR DATA ACQUISITION

4.6 Procedure for Data Acquisition

4.6.1 Representative Internet of Things Devices

When performing experimental evaluations of the proposed methods, it is nec-

essary to use sufficiently representative IoT hardware platforms. IoT devices

can be categorised as low-end, middle-end and high-end devices [168]. For

the experimental evaluations, two representative IoT device platforms from

the low-end and high-end device classes were used; namely a Raspberry Pi 3

B+ [169] and an Arduino Leonardo [170].

The Raspberry Pi 3 B+ device consists of an ARM Cortex-A53 quad-core

processor running at 1.4 GHz clock speed. It has a memory capacity of 1 GB.

Furthermore, it has WiFi, Bluetooth 4.0, and Ethernet for communication. All

of these resources represent the class of a high-end IoT device that is capable

of running a Linux-based operating system and comparatively memory- and

processing-intensive applications. Therefore, this device can be used to easily

emulate various existing IoT devices during experimentation. Meanwhile, the

Arduino Leonardo device consists of an 8 bit MCU with an AVR architecture

that runs at 16 MHz clock speed. It has 2.5 KB memory that is barely enough

to run simpler programs. Therefore, it can be considered as a representative

of a lower-end IoT device.

The Raspberry Pi device was running Raspberry Pi OS, which is a variant

of the Debian GNU/Linux operating system [171]. When performing experi-

ments to observe EM radiation from the Raspberry Pi, it was connected to

a host computer through the Ethernet port and logged into remotely through

a Secure Shell (SSH). This enables the control of the Raspberry Pi through

the host computer remotely during experimentation. Similarly, Arduino device

was connected to the host computer through a USB port. Since Arduino does

not contain an operating system, control of the device through USB port was

conducted by programming it to take inputs as serial data depending on the

requirements of each experiment.

When observing EM radiation from IoT devices, a near-field H-Loop mag-

netic antenna with a diameter of 15 mm was used in all experiments. The

76

4.6. PROCEDURE FOR DATA ACQUISITION

Figure 4.12: Arduino and Raspberry Pi devices with H-loop antennas.

HackRF One SDR device was connected to this H-loop antenna through a

semi-rigid RF cable in order to position the antenna in a desired place for a

prolonged period of time for experimentation. Both the SDR device and the

IoT device being observed were connected to the same host computer to con-

trol the experimental setup and to store the captured EM data. As shown in

Figure 4.12, the H-loop antenna is placed right on top of the processor chip of

the IoT devices.

4.6.2 Determining Data Acquisition Parameters

The acquisition of EM data from an IoT device depends on a set of important

parameters: (1) the information-leaking signal frequency, (2) the origin loca-

tion of the signal, (3) the data acquisition sample rate, and (4) the duration

of data acquisition [50]. Before retrieving a particular forensic insights from a

particular IoT device in an investigative scenario, these parameters need to

77

4.6. PROCEDURE FOR DATA ACQUISITION

1.3900 1.3925 1.3950 1.3975 1.4000 1.4025 1.4050 1.4075 1.4100
Frequency (Hz) 1e9

126
116
106
96
86
76

PS
D

(d
B/

Hz
)

(a)

2.775 2.800 2.825 2.850 2.875 2.900 2.925 2.950 2.975
Frequency (Hz) 1e8

126
116
106
96
86
76

PS
D

(d
B/

Hz
)

(b)

Figure 4.13: Leakage signals of two representative IoT devices – (a) Raspberry Pi 3
B+ at 1.4 GHz and (b) Arduino Leonardo at 288 MHz (18th harmonic).

be predetermined and provided to the forensic investigators as a part of their

EM-SCA tool set.

Information-leaking Frequency: The successful observation of EM radi-

ation from a target IoT device requires the precise identification information-

leaking frequency of the particular device. A wide variety of frequencies can

carry forensic insights. However, currently, there are no systematic methodol-

ogy to precisely identify them. Under these circumstances, the EM radiation

frequency that is always available is the clock frequency of the IoT device’s

MCU chip [90]. For instance, in the case of Raspberry Pi device, this frequency

is 1.4 GHz. In Arduino Leonardo device, the clock frequency is 16 MHz. In

some cases, external EM noise from various other sources can exists in the

same frequency; causing interference in clearly observing the EM radiation

coming from a particular IoT device. When this happens, a higher harmonic

frequency of the clock frequency , i.e., a multiple of the original frequency, can

78

4.6. PROCEDURE FOR DATA ACQUISITION

2.775 2.800 2.825 2.850 2.875 2.900 2.925 2.950 2.975
Frequency (Hz) 1e8

121
111
101
91
81
71

PS
D

(d
B/

Hz
)

(a)

2.775 2.800 2.825 2.850 2.875 2.900 2.925 2.950 2.975
Frequency (Hz) 1e8

119
109
99
89
79
69

PS
D

(d
B/

Hz
)

(b)

Figure 4.14: PSD of the EM radiation when running Bubble sort algorithm with two
different antenna positions on Arduino.

be used as the information-leaking frequency. For instance, Arduino’s 16 MHz

EM radiation can overlap with shortwave radio transmissions. Therefore, it

was empirically identified that the 18th harmonic of the clock frequency, i.e.,

288 MHz, is most appropriate to observe EM radiation of the Arduino device

(see Figure 4.13).

Source Location of the Signal: The next important decision that is nec-

essary to observe EM radiation is the precise location on the IoT device from

where the radiation is coming from. The H-loop antenna has to be placed as

close as possible to that location in order to maximise EM signal reception.

Figure 4.14 illustrates two observations of the EM signal from the Arduino de-

vice by placing the H-loop antenna over two different regions of the processor.

As it is evident, the antenna position corresponding to Figure 4.14(b) captures

a stronger signal. Therefore, when attempting to identify the most suitable

signal reception position, the H-loop antenna should be moved across the tar-

get IoT device while keep it as closer to the device surface as possible. The

79

4.6. PROCEDURE FOR DATA ACQUISITION

reception signal should be visualised in real-time, e.g., as an FFT or a spec-

trogram, to identify the signal variation with the antenna movement. At the end

of this empirical assessment, the positioning of the antenna that produced the

clearest EM signal observation should be noted and fixed for that particular

IoT device type.

Sample Rate of Data Acquisition: As described in Section 2.4, the sam-

ple rate and bandwidth of SDR hardware are equal. Therefore, setting the

sample rate to a particular value has multiple consequences to the EM sig-

nal acquisition process. Firstly, higher sample rates provides more information

about the EM signal, while lower sample rates can lose information. Secondly,

a higher sample rate increases the bandwidth of the captured signal around

its centre frequency. In most cases, multiple information-leaking frequencies

occur surrounding the IoT device’s clock frequency. The use of a wider band-

width helps to capture them. Under these circumstances, using as high a

sample rate as possible is advantageous. The only limiting factor of the use

of fast sample rates is the computational overhead it can cause to further EM

data processing stages. The HackRF SDR device used in this work facilitates

sample rates up to 20 MHz. Therefore, this highest sample rate was used on

the experimental evaluations throughout this thesis.

Duration of Data Acquisition: When observing the EM radiation of an IoT

device, the time period of data acquisition has to enclose the internal activity

of interest of the IoT device. However, due to the repetitive nature of most IoT

firmware, i.e., doing the same activity again and again, it is rarely needed to

precisely time the sampling duration to capture a specific internal activity of an

IoT device. Therefore, a sufficiently long EM data observation can enclose all

the necessary information the IoT device is leaking. Meanwhile, longer sam-

pling duration produces a larger EM trace, causing difficulties to the handling

and processing of EM data in later stages. All these concerns point to the

need of a carefully set sampling duration, which is not too long and not too

short. In the experimental evaluations of this work, EM traces were acquired

with varying sampling time periods below 60 s depending on the experimental

requirements in each case.

80

4.7. EXPERIMENTAL PLAN

4.7 Experimental Plan

Having presented the design and implementation details of the EMvidence

framework, the next two chapters explore the specific methods that are nec-

essary to build plug-ins.

4.7.1 Designing Methods to Acquire Forensic Insights

The capability of an EMvidence plug-in to extract forensically-useful insights

depends on the successful application of ML methods. While there are vari-

ous ML algorithms that have been published in the literature, the choice of a

suitable ML algorithm for a plug-in can vary in different investigative contexts.

The inspection of EM radiation and the identification of known patterns that

are correlated to specific information of IoT firmware is a classification prob-

lem. Chapter 5 develops and evaluates the ML methods that are suitable for

such purposes.

4.7.2 Designing Methods to Increase Efficiency

The EM radiation data of a DUT captured using SDR hardware typically con-

sist of a wide bandwidth and sample rate. Therefore, such data are typically

highly dimensional. Large dimensionality of data is a challenge to the clas-

sification tasks with ML algorithms. Some ML algorithms may fail completely

in the face of hugely dimensional data, while some other may demand unrea-

sonable amounts of computational resources to produce predictions within a

reasonable time period. This affects the practical usability of plug-ins in EMv-

idence in investigative scenarios. Chapter 6 explores a multitude of methods

to increase the efficiency of EMvidence plug-ins by addressing the dimension-

ality problem in EM data.

81

Chapter 5

Insights from Waves: Machine

Learning Methods for EMvidence

5.1 Introduction

The goal of this chapter is to evaluate ML methods for building EMvidence

plug-ins to acquire potential forensically-useful insights from IoT devices

through their EM radiation. IoT devices that are in wide use in day-to-day life

comes in all shapes and sizes. While each IoT device can consist of a unique

combination of hardware and software, they can broadly be categorised into

two classes based on their computing resources as low-end and high-end IoT

devices [168]. The design choice of choosing computing hardware resources

to be included in an IoT device depends on multiple reasons. Among them,

source of power is an important factor. A device that can be continuously

mains powered can have more powerful hardware, and therefore, can be con-

sidered as a high-end IoT device. Meanwhile, a device that has to rely on a

battery for a prolonged period of time needs to use an energy efficient proces-

sor such as MCU or SoC. Hence, such devices can be considered as low-end

IoT devices and include health implants, fitness wearable devices, and smart

light bulbs. Due to limited on-board storage, these devices generally do not

store much data. They tend to either transmit data into an associated smart-

phone app or hub, or directly to a cloud service. Therefore, even if a low-end

82

5.2. CONSIDERATIONS FOR EXPERIMENTS

IoT device contains some non-volatile data storage, e.g., an SD card, it is less

likely that traditional digital evidence extraction methods would prove fruitful.

Meffert et al. highlighted the need for identifying the running forensic state

of IoT devices in an investigation [172]. A forensic state is the state of hardware

and software of an IoT device at the time it was seized by law enforcement.

For example, an IoT smart lock can have two states, i.e., locked and unlocked,

and its state could be a vital information in an investigation. Furthermore, IoT

devices that are subject to investigation may have been tampered with inten-

tionally or as a result of malware. Ronen et al. demonstrated that IoT smart

bulbs can be infected Over-the-Air (OTA) and be controlled remotely [173].

Such maliciously modified devices are shown to be effective in causing harm-

ful results to humans, such as creating epileptic seizures to vulnerable individ-

uals by adjusting the frequency of LED smart bulbs [174]. Therefore, verifying

whether the device is running its default firmware can useful. In case the de-

vice has been reprogrammed and protected with encryption, identifying the

encryption algorithm is also forensically useful.

The rest of this chapter is organised as follows. Although a multitude of ex-

perimental evaluations have been performed, they have a common objective

and uses a similar hardware and software setup in most cases. Section 5.2

introduces the experimental procedure where common details across all the

experiments are described. However, certain specific details to individual ex-

periments are left to be mentioned under each experiment later. The experi-

ments and the results obtained are laid out in Section 5.3. Finally, Section 5.4

discusses the implications of these results and how they are integrated into

the EMvidence framework.

5.2 Considerations for Experiments

EM-SCA attacks require a sufficient number of target device EM traces. Fur-

thermore, in order to train ML models using EM traces, it is necessary to have

EM trace samples annotated with the specific software activities of the target

device they represent. Three hardware components are necessary for the ac-

83

5.2. CONSIDERATIONS FOR EXPERIMENTS

quisition of EM traces. These are namely; a DUT, a signal capturing device,

and a host computer. The signal capturing device is connected to the host

computer via USB interface while the DUT may or may not be connected in a

similar manner. The host computer runs the EMvidence framework and stores

the captured EM traces for analysis.

5.2.1 Types of Useful Insights

The number of potential insights from IoT devices that may help to progress

forensic investigations can be infinite [15]. Experimentally evaluating all of

them is not practically possible. Due to this reason, it is necessary to define

a sufficiently inclusive set of insights that may prove the point and provide the

confidence for future research. With this goal in mind, the following insights

were focused to experimentally evaluate in this chapter.

• Cryptography-related Events: According to the requirements of com-

putational resources and the level of security, the choice of cryptographic

algorithms employed on an IoT device may vary. The possibility to in-

spect the storage of a device using classical forensic approach depends

on whether the device in question employs data encryption.

• Detection of the Firmware Version: The firmware of IoT devices can

receive software updates either automatically or by manual actions of

the user. These updates bring bug fixes and patches to cover security

vulnerabilities. Therefore, IoT devices of the same type may run different

versions. In order to decide further moves to inspect an IoT device,

the investigators require sufficient knowledge about the firmware version

running on it.

• Malicious Firmware Modification: A compromised IoT device for a ma-

licious purpose is not identifiable by the visual inspection. Such compro-

mised devices may be relevant to an ongoing investigation, however,

may go unnoticed. The inspection of such a device by other means,

such as analysing network activities, may even mislead the investiga-

84

5.2. CONSIDERATIONS FOR EXPERIMENTS

tors. Therefore, the identification of potential tampering to firmware is

important.

• Current Behavioural State: When an IoT device is discovered during

an investigation, there is a high chance for it to be alive and running. The

running firmware of an IoT device can be in one of a few states. This is

because, most IoT devices are designed to perform a limited set of tasks

that will be executed in a state machine-like manner. The identification

of the current internal state of a running device at the location where the

device was found can help investigators to make informed decisions.

5.2.2 Machine Learning Algorithms

While there are various ML algorithms available for similar purposes, it is

not our objective to evaluate which algorithms perform best in gathering

forensically-useful insights in which scenarios. Instead, our requirement in

this chapter is to test and demonstrate that the intended goal is achievable

with ML. Towards this goal, the accuracy of the results achieved through ML

algorithms in general is the key focus. The efficiency of training, testing and

validation of the results with a particular ML algorithm is a secondary concern.

Therefore, we have the freedom of choosing any ML algorithm as far as it

facilitates this objective.

Mapping the pattern of EM radiation signals into known internal behaviours

of IoT devices is a classification problem from the perspective of ML. This work

uses neural network-based classifiers that provide a great flexibility by tuning

a multitude of parameters. In its most basic form, a neural network is called

MLP [175] where the information flow moves from the input layer towards the

output layer across one or more hidden layers. In addition to MLP, this work

makes use of LSTM architecture of neural networks as well [176]. An LSTM

network consists of feedback connections that allows the network to look at

sequences of data points at once instead of individual data points in classical

neural networks. Therefore, it is more suitable at identifying patterns that occur

in time series data, such as EM traces [177]. In addition to neural networks,

85

5.2. CONSIDERATIONS FOR EXPERIMENTS

this work also uses SVM in binary classification problems due to the simplicity

of such scenarios [178].

5.2.3 Preprocessing Procedure

An EM trace is a vector that represents the amplitude variation of a signal over

time. Due to fast sample rates used by signal acquisition hardware, an EM

trace with a duration of milliseconds can contain millions of data points. When

these data are used directly as input to train and test ML models, the highly di-

mensional data can negatively affect time and amount of computing resources

they demand. As a result, EM traces acquired through the aforementioned

hardware setup are not suitable to be directly used to train ML models. There-

fore, EM traces need to be preprocessed in order to transform them from a

continuous time domain signal into a format that has a manageable feature

vector for ML models.

When attempting to classify software activity EM traces, labelled EM traces

are needed. For this purpose, EM trace samples are acquired by running

each software activity on the target device and collecting EM traces of a pre-

defined length. Originally, each EM trace is in time domain. Time-domain

signals are prone to fluctuations caused by external noise. Therefore, each

trace is transferred to frequency domain using FFT with an overlapping slid-

ing window [177]. For each EM trace, this results in a collection of FFT vec-

tors representing consecutive time steps. The dimensions of the FFT vectors

are still considerably higher to be directly used as the feature vector for ML

classifier, e.g., 200,000 dimensions. Therefore, the dimensions of these FFT

vectors are further reduced by dividing the elements of each FFT vector into

1,000 equally spaced bins. From each bin, the maximum element is selected

as the representative of the bin without losing the generalisation. This results

in a 1,000 element long feature vector for each time step of EM traces.

86

5.3. EXPERIMENTAL EVALUATION

Figure 5.1: Waveform of the AM demodulated signal at the CPU clock frequency of
Raspberry Pi. The AM modulated signal represents the AES encryption performed on
the device. Sudden higher peaks are an external interference signal coming from an
unknown source. (The three sub-figures depict three zoomed-in scales of the same
signal.)

5.3 Experimental Evaluation

5.3.1 The Cryptographic Activities of High-end Internet of

Things Devices

As previously shown in the literature [80, 81], EM signals coming from the CPU

modulate the software behaviour on its amplitude. In order to observe such

variations, the following experiment was performed. A Raspberry Pi device

was programmed to run a shell script that performed AES encryption opera-

tions with a time gap of 1 s. The shell script used OpenSSL commands to

invoke the AES-256-CBC algorithm on a large file continuously. The AES op-

87

5.3. EXPERIMENTAL EVALUATION

EM Traces Frequency
Domain

Hardware
Setup

Data
Acquisition

Fourier
Transformation

Averaging & Normalisation

Target
Device

Learning AlgorithmClassification Results

Figure 5.2: The EM trace acquisition and preprocessing stages in order to classify
cryptographic activities using an ML model.

erations performed periodically on the Raspberry Pi resulted in observations

of amplitude variations in the EM signal, as illustrated in Figure 5.1. The blobs

that occur with a 1 s gap in the first sub-figure correspond to the AES encryp-

tion operations, while the much higher peaks that occur at irregular intervals

are external noise. A selected region of the signal is zoomed-in in the second

sub-figure. The third sub-figure illustrates the EM radiation pattern of a single

AES encryption operation.

Among the software activities of IoT devices that may have a forensic in-

terest, cryptographic operations are at the forefront [31]. When storing data

on-board or transmitting over the network, modern high-end IoT devices tend

to rely on cryptographic encryption as a security measure. The following ex-

periment investigates the possibility of using EM radiation of IoT devices in

order to automatically detect when they perform data encryption operations.

Three major cryptographic algorithms, i.e., AES-128, AES-256, and 3-DES

are used, as three classes and a mixture of non-cryptographic operations is

used as another class. Figure 5.2 illustrates the procedure of acquiring data,

preprocessing data, and finally the classification to classes.

Data Acquisition: The same hardware configuration with a Raspberry Pi

as the target device and a HackRF as the EM signal capturing device are used

88

5.3. EXPERIMENTAL EVALUATION

in this experiment. In order to train a classifier to detect cryptographic oper-

ations, a labeled EM trace set is necessary for each classification class. To

assist in this task, a UDP communication channel between the Raspberry Pi

and the host computer was established through the Ethernet cable. To reduce

unnecessary EM noise capture, each time the Raspberry Pi perform a cryp-

tographic operation, it notified the host computer immediately before and after

by sending UDP packets. This allows the host computer to identify the time

period of the EM data stream coming from the HackRF, that corresponds to the

cryptographic operation. Future work will focus on automatically identifying the

necessary radiation segments through a sliding window, eliminating this step.

Each such identified EM signal segments are saved as an EM trace along with

the label of the cryptographic algorithm. Overall, the EM traces collected was

about 12 GB.

Data Preprocessing: Due to multiple factors, the acquired EM can have

variable lengths in the time-domain and also may not properly enclose the

cryptographic operation within its boundary. These reasons include the inher-

ent difference of the time each cryptographic calculation takes to execute, the

delays in UDP communication between the Raspberry Pi and the host com-

puter, and the delays in the HackRF data acquisition software to start and stop

the EM sampling. Due to the large length and the variability of the lengths,

these labeled EM trace samples are still unsuitable to be directly used as

training samples for a ML-based classifier. To mitigate these differences in EM

traces, each trace is converted into the frequency-domain by using a Fourier

Transformation. This is achieved by calculating STFT over a specified window

of samples over the EM traces [35].

Setting the STFT window size to be too large can cause the resulting

frequency-domain vector to be extremely large. Similarly, setting the STFT

window to be too small can cause the loss of information. In order to have a

balance between the two ends, the STFT window size was empirically set to

0.1 s after testing with different window sizes. Since the sample rate of the

HackRF is 20 MHz, the resulting Fourier Transform contained a vector with

200,000 elements; each containing the amplitude of a frequency component

of the original EM radiation. In this Fourier Transform vector, it was observed

89

5.3. EXPERIMENTAL EVALUATION

1.395 1.3975 1.4 1.4025 1.405
Frequency (GHz)

0

50

100

150

Am
pl

itu
de

3DES

1.395 1.3975 1.4 1.4025 1.405
Frequency (GHz)

0

50

100

150

Am
pl

itu
de

AES-128

1.395 1.3975 1.4 1.4025 1.405
Frequency (GHz)

0

200

400

Am
pl

itu
de

AES-256

1.395 1.3975 1.4 1.4025 1.405
Frequency (GHz)

0

50

100

150
Am

pl
itu

de
No Cryptography

Figure 5.3: Sample Fourier Transform vectors of cryptographic algorithms that run on
Raspberry Pi.

that the variation of peaks from software activity was only distinguishable in

the middle portion. Therefore, it was decided to use only the frequency com-

ponents from 1/4 to 3/4 of the original Fourier Transform through discarding the

edges. Figure 5.3 illustrates samples of Fourier Transforms from each class,

where it is evident that there are slight variations unique to each activity.

The number of elements in the Fourier Transform was too large to be di-

rectly taken as an input vector for modelling. The dimensions can be reduced

by breaking the Fourier Transform vector into a limited number of bins. Subse-

quently, a representative value can be selected for each bin by averaging the

values or selecting the maximum valued element in each bin. In this particular

experiment, 500 bins were selected where the elements within each bin were

averaged to generate feature vector of 500 features. The number of bins and

feature vectors were decided through experimentation and evaluation of the

produced ML classification models.

90

5.3. EXPERIMENTAL EVALUATION

Table 5.1: Classification accuracy of cryptographic algorithms.

Activity Precision Recall F1-Score
Other 0.93 0.85 0.89

AES-256 0.78 0.86 0.82
AES-128 0.99 0.92 0.95

3DES 0.81 0.85 0.83

Classification: A neural network was implemented to classify EM traces

into the correct class that had four layers; an input layer, two hidden layers,

and an output layer. The number of hidden layers and the number of hidden

nodes used in each of the hidden layers were decided empirically by evaluat-

ing various settings. Accordingly, the first hidden layer was assigned 10 hidden

nodes, while the second hidden layer was assigned 5 hidden nodes. The in-

put layer has 500 input nodes for the feature vector and the output layer has

4 nodes for the four classes. For each class, 600 samples were taken for the

training process totalling 2,400 training samples for all four classes. The learn-

ing rate of the neural network was set to 1-20, which was decided empirically.

The classifier code was running on a computer with 64 bit Intel Core i-5 quad-

core processor and 16 GB memory, running a Linux operating system. While

the EM traces acquisition and preprocessing to generate training samples took

several hours, the training and testing phases of the neural network took less

than a minute to provide classification results. A 10-fold cross-validation was

used to validate the classification results.

Results: The result of the classification is illustrated in Table 5.1. The neu-

ral network classifier correctly classified the three cryptographic algorithms

and the non-cryptographic scenarios with over 80% accurately. Consider-

ing the fact that Raspberry Pi was running a computationally heavy operat-

ing system like Linux, which can make use of all four cores of the processor

for multi-tasking, the ability to distinguish between these three major encryp-

tion algorithm settings hints that it should be possible to detect cryptographic

algorithms on much less capable hardware devices. Existing cryptographic

key recovery attacks depend on prior knowledge of the cryptographic algo-

rithm being employed. The ability to identify the cryptographic algorithm solely

91

5.3. EXPERIMENTAL EVALUATION

based on EM observations can increase the likelihood of success for such key

recovery attacks.

5.3.2 The Cryptographic Activities of Low-end Internet of

Things Devices

Some cryptographic algorithms, e.g., RSA, demand reasonably high computa-

tional power making them unsuitable for low-powered computing devices. As a

result, ECC has increasingly been deployed on these devices [110]. ECC is a

public key cryptography that requires a smaller key length compared to RSA.

Numerous different elliptic curves can be used in ECC. Table 5.2 illustrates

five major elliptic curves designed to run on low power devices (available in

the micro-ecc library). These elliptic curves use different private and public

key lengths with bespoke configuration settings.

Due to the differences in settings of each elliptic curve, the running time

of ECC operations for each curve can vary. Figure 5.4 illustrates the aver-

age time different elliptic curves take to digitally sign a message and to verify

the signature of a message (ECDSA). The measurements were calculated by

running each ECDSA algorithm on an Arduino device with equally sized mes-

sages. For each curve, both signing and signature verifying operations take

almost the same amount of average time. However, the average time taken by

individual curves are distinguishably different from each other.

In order to investigate the possibility of detecting the presence of ECC cryp-

tography through EM radiation, an experiment was conducted with an LSTM

binary classifier. The objective is to train a model to distinguish between ECC

Table 5.2: Private and public key sizes of ECC curves.

Curve Private Key (bytes) Public Key (bytes)
secp160r1 21 40
secp192r1 24 48
secp224r1 28 56
secp256r1 32 64
secp256k1 32 64

92

5.3. EXPERIMENTAL EVALUATION

secp160r1 secp192r1 secp224r1 secp256r1 secp256k1
Elliptic Curve

0

1000

2000

3000

4000

5000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

ECDSA Signing
ECDSA Verifying

Figure 5.4: The time it takes to digitally sign and verify a message using different
ECC curves on an Arduino device.

cryptography operations and other software activities. For this purpose, an

Arduino device was programmed to perform ECDSA signing operations that

was controlled by sending commands through USB from the host computer.

Each time an ECDSA signing operation is performed, a 100 ms trace was cap-

tured through a H-loop antenna placed over the Arduino’s MCU connected to

a HackRF SDR.

For each of the five elliptic curves, 50 EM traces were acquired (totalling

250 traces) for the ECC cryptography class. For non-ECC cryptography oper-

ations class, 20 Arduino programs used that have varying complexities. From

each Arduino program, 12 traces were acquired for non-ECC cryptography

class (totalling 240 traces). A sliding window of 10 ms was used with a 2 ms

step size (80% overlap) to collect segments from each trace and subsequently

a feature vector for each window segment was calculated using FFT broken

down into 1,000 equally spaced bins. Each bin’s maximum amplitude fre-

quency component was selected as the representative signal for the bin. This

93

5.3. EXPERIMENTAL EVALUATION

results in training sequences each having time steps where each time step

consists of 1,000 features. All the training samples were normalised to values

between 0 and 1. Figure 5.5 illustrates examples of signals acquired from a

DUT while running two curves of ECC and running two non-ECC programs.

The LSTM classifier was implemented using Keras library with Python.

A single LSTM layer consists of 100 nodes and a fully connected layer with

1 node for binary classification. This last node uses a sigmoid activation func-

tion, while the model uses binary crossentropy as the loss function. The se-

quence dataset was broken into 75% and 25% sets for training and testing

purposes respectively. When using 5 epochs and 64 batch size, the LSTM

classifier achieved an impressive 100% accuracy. In order to assess the ef-

fect from the sliding window length and EM trace length, further LSTM models

were trained and tested varying those parameters. Figure 5.6 illustrates the

variation of classification accuracy against both sliding window length and EM

trace length. As is evident, the longer the EM traces, the higher the classifi-

cation accuracy achieved. This is due to the fact that longer EM traces results

2.8 2.9
Frequency (Hz) 1e8

121
111
101
91
81

PS
D

(d
B/

Hz
)

secp160r1

2.8 2.9
Frequency (Hz) 1e8

121
111
101
91
81

PS
D

(d
B/

Hz
)

secp192r1

2.8 2.9
Frequency (Hz) 1e8

121
111
101
91
81

PS
D

(d
B/

Hz
)

program-2

2.8 2.9
Frequency (Hz) 1e8

121
111
101
91
81

PS
D

(d
B/

Hz
)

program-4

Figure 5.5: Example ECC and non-ECC signals acquired from Arduino device.

94

5.3. EXPERIMENTAL EVALUATION

10 20 30 40 50 60
Window Length (ms)

94

96

98

100

Ac
cu

ra
cy

 (%
)

20 30 40 50 60 70 80 90 100
Trace Length (ms)

98.0

98.5

99.0

Ac
cu

ra
cy

 (%
)

Figure 5.6: Variation of classification accuracy against sliding window length and EM
trace length.

in longer sequences with more information for the LSTM model to learn. In

contrast, longer sliding window lengths negatively affected the classification

accuracy, reducing it to 95% in the worst case. Again, the reason is behind

the length of the sequences. Longer windows result in shorter sequences for

a fixed length of EM traces.

5.3.3 Firmware Version of Internet of Things Devices

While heavy cryptographic algorithms are employed on resource rich IoT de-

vices, simpler devices are unable to use such computationally heavy algo-

rithms to encrypt data due to the lack of computational resources. Therefore,

they are usually programmed to perform a repetitive task continuously. Among

the various tasks performed by IoT devices, certain tasks have forensic inter-

est. These include reading data from a specific on-board sensors, such as a

microphone, writing data to an on-board storage device, such as an SD card,

95

5.3. EXPERIMENTAL EVALUATION

1 /* Arduino test program */
2 void setup(){
3 }
4 void loop(){
5 for(int i=0, i<20, i++) { delay(10); }
6 for(int i=0, i<20, i++) { delay(10); }
7 /* further loops */
8 }

Code Snippet 1: An example Arduino program that performs a time complexity O(n)
task repetitively inside an infinite loop that is used as a classification target.

and executing a command received remotely through the network. Identifying

what operations an IoT device is performing at the moment when it was seized

live could prove important. For example, if the device is currently wiping the

SD card according to a command received remotely, the investigators need to

know it immediately so that they can turn the device off without waiting for any

further live analysis.

To explore the possibility of distinguishing different tasks performed by a

simple IoT device, the following experiment was carried out. The objective

was to train and test a ML model that can classify simple IoT firmware with

increasing complexity. It was decided to use an Arduino device for this experi-

ment as its simpler processor matches the resource profile of a lower-end IoT

device. In order for classification, ten Arduino programs were selected that

repeatedly perform a task inside an infinite loop. Code Snippet 1 illustrates

an example Arduino program used as a classification target. As can be seen,

the program consists of an infinite loop designed to represent a repetitive task

of an IoT device with a time complexity of O(n). Each subtask the device is

performing is represented by individual for loops with a finite number of itera-

tions. It is assumed that a malicious modification to the device is performed by

adding a new subtask to the program or by removing an existing subtask from

the program [96].

Data Acquisition: In order to collect EM trace samples for each program,

the Arduino was programmed with them separately and allowed to run with a

96

5.3. EXPERIMENTAL EVALUATION

1.0 0.5 0.0 0.5 1.0
Frequency (Hz) 1e7

126

116

106

96

86

76

PS
D

(d
B/

Hz
)

1.0 0.5 0.0 0.5 1.0
Frequency (Hz) 1e7

126

116

106

96

86

76

PS
D

(d
B/

Hz
)

1.0 0.5 0.0 0.5 1.0
Frequency (Hz) 1e7

126

116

106

96

86

76

PS
D

(d
B/

Hz
)

1.0 0.5 0.0 0.5 1.0
Frequency (Hz) 1e7

126

116

106

96

86

76
PS

D
(d

B/
Hz

)

Figure 5.7: Power spectral density (PSD) of the EM radiation from four different Ar-
duino programs that were used for classification.

H-loop antenna placed approximately 1 cm above the MCU of the device. The

HackRF was tuned to the information leaking 288 MHz frequency of the target

device and sampled data at the rate of 20 MHz. Since the target device was

performing a repetitive task, there was no software instrumentation required.

Each acquired EM trace was approximately 25 ms long. Since there were ten

programs to detect, 600 EM traces were acquired per class, which resulted in

177 GB of data for the overall 6,000 EM traces. Figure 5.7 illustrates the PSD

of the EM radiation of four such programs subject to the experiment.

Data Preprocessing: From the extracted EM traces of each program

class, 10 ms long segments were extracted and converted to the frequency

domain using FFT. Unlike the aforementioned scenario of classifying between

4 cryptographic classes, this experiment attempts to classify 10 different pro-

grams. A 500 element feature vector did not seem to be effective in this case.

Therefore, it was empirically decided to create a feature vector of 1,000 fea-

97

5.3. EXPERIMENTAL EVALUATION

Figure 5.8: Confusion matrix of the neural network classifier to detect ten different
Arduino programs, which are labelled from 0 to 9.

tures by breaking a Fourier Transform vector into 1,000 bins. Furthermore, it

was noticed that averaging values within a bin smoothed out the most signif-

icant frequency component under the noise floor. This most significant fre-

quency ideally would have been selected as the representative element for

the bin. Therefore, it was decided to select the maximum value within each bin

instead of averaging in order to build the feature vector.

Although the EM trace data were acquired while the target device was

running in a noisy environment, there was no noise filtering applied to the EM

traces before generating the feature vectors. The choice of the information

leaking 18th harmonic of the Arduino clock frequency was made to ensure no

strong external noise source in that frequency.

Classification: Similar to the previous experiment, a neural network with

two hidden layers was designed, where first hidden layer contained 10 hidden

nodes while the second hidden layer contained 3 hidden nodes. The input

layer contained 1,000 features and the output layer contains 10 output nodes.

98

5.3. EXPERIMENTAL EVALUATION

Figure 5.9: Confusion matrix of the neural network classifier to detect twenty different
Arduino programs, which are labelled from 0 to 19.

With 600 training samples for each class, a total of 6,000 training samples

were fed to the neural network to train and test the model to detect ten Arduino

programs running on the target device.

Results: Figure 5.8 illustrates the confusion matrix of the classification

results. The programs subject to the experiment are labelled from 0 to 9 in

the figure. As can be seen, the majority of the Arduino programs were de-

tected by the classifier accurately. Under a 10-fold cross-validation, the clas-

sifier achieved a mean classification accuracy of 90% for an error margin of

11% within a 95% confidence interval. Considering the fact that currently it is

nearly impossible to identify the software activities of an IoT device without a

significant support from the manufacturer, the achieved accuracy through EM-

SCA can potentially be a significant benefit to an investigator to gain insight on

the device. Later, this experiment was repeated with 20 different Arduino pro-

grams that follow the same source code format. Unlike in the previous case,

the MLP classifier was set to have 3 hidden layers with 100, 50, and 30 hidden

99

5.3. EXPERIMENTAL EVALUATION

nodes respectively. The classifier achieved a 96% accuracy with this setup

(see Figure 5.9).

5.3.4 Malicious Modifications to the Firmware of Internet of

Things

A very simple IoT device with a 8-bit processor and few kilobytes of memory

is only capable of running a simple firmware that can perform a simple and

repetitive task. The firmware running on such IoT devices are easier to be

replaced by attackers in order to make them run malicious code. A device

with a modified firmware can cause malfunctions not intended by the manu-

facturer. For example, Mirai is a malware that infected certain types of IoT

devices through exploiting their unchanged factory default passwords [179]. It

enabled the infected IoT devices to take part in distributed DoS attacks with-

out the knowledge of device owner. Therefore, detecting such modifications to

the stock firmware of an IoT device is highly necessary. When the EM radia-

tion signature of a target device is already known, any change to the default

firmware of the device should cause a detectable change to the EM radiation

pattern. Therefore, it is possible to train a ML model to recognise anomalous

EM radiation patterns due to firmware changes.

When detecting anomalies using ML models, there are two potential di-

rections; namely outlier detection and novelty detection [180]. In the outlier

detection, an unsupervised approach is taken where both legitimate data and

anomalous data are provided to the ML model. The model fits into the legiti-

mate data with the assumption that this data are densely packed in the space

while anomalies stay comparatively away. In contrast, novelty detection is a

semi-supervised approach where only the legitimate data samples are pro-

vided to the model to train. Whenever new data samples are provided, the

model assesses the likeness of the new data to the data it was trained on in

order to determine whether the new data belongs to the same distribution or

not.

Since there are infinite possibilities for modification to the default firmware

of an IoT device, it is difficult to provide sufficiently representative set of sam-

100

5.3. EXPERIMENTAL EVALUATION

ples of anomalies for a ML model to learn. Therefore, in this case, the semi-

supervised novelty detection by training a model with only the legitimate sam-

ples is decided the best technique. In this experiment, a one-class SVM with a

non-linear kernel (RBF) provided by the Scikit-Learn library was used for this

purpose [61]. When training the model, one of the Arduino programs used in

the aforementioned software behaviour detection experiment was used as the

legitimate firmware of the device, while a mixture of other programs were used

as the modified programs. The model was trained by providing 500 training

samples of the legitimate program produced during the previous experiment.

For testing, 100 further samples of the legitimate program was provided where

the testing error rate was 18%. Finally, when 20 different modified Arduino pro-

grams were provided for validation, each of them were detected by the model

recording a 100% accuracy on anomalous program detection.

5.3.5 Current Behavioural State of an Internet of Things De-

vice

In order to illustrate the usefulness of detecting forensic state of low-end IoT

devices through EM-SCA, the following hypothetical scenario was considered.

An IoT device has been deployed in a building as a part of an intruder detection

system. The device consists of a sensor that detects movements within a

specified space of the premises. The device consists of two actuators, an

alarm and a door lock, that it can control independently. Furthermore, the

device is connected to a GSM module in order to send and receive SMS.

The device firmware is programmed to continuously read the motion sensor

to detect intrusions into the premises. Upon detection, it can perform one of

three tasks – locking the door, firing an alarm, or sending a text message to

the owner. At any time, the device can be disabled by pressing a physical

button that puts the device into an idle state. The device does not have any

other associated network servers that can log device states. Furthermore,

the device does not switch internal states due to any other reason than the

specified ones. The five states of the device that we are interested in are

namely; (1) idle, (2) read digital sensor (reading motion sensor), (3) control

101

5.3. EXPERIMENTAL EVALUATION

2.8 2.9
Frequency (Hz) 1e8

121
111
101
91
81

PS
D

(d
B/

Hz
)

Read Digital Sensor

2.8 2.9
Frequency (Hz) 1e8

121
111
101
91
81

PS
D

(d
B/

Hz
)

Control Digital Actuator

2.8 2.9
Frequency (Hz) 1e8

121
111
101
91
81

PS
D

(d
B/

Hz
)

Control Analog Actuator

2.8 2.9
Frequency (Hz) 1e8

121
111
101
91
81

PS
D

(d
B/

Hz
)

Serial Communication

Figure 5.10: The PSD plots of the IoT device’s EM signal at different device states.

digital actuator (firing the alarm), (4) control analogue actuator (turning door

lock), and (5) serial communication (sending text message).

Suppose that this building is subject to a legal investigation for a crime as-

sumed to be conducted by an intruder. Upon the arrival of the law enforcement

officers, one of the investigative questions that arise is whether the intruder de-

tection system functioned as expected or did an insider disable it before the

crime occurred. The answer to this question can be found if the current internal

state of the device is known. Turning the device off and moving it to a digital

forensics laboratory destroys the current internal state of the device. Perform-

ing a live EM-SCA on the intrusion detection device and identifying its current

software state may be the only viable approach to resolve this problem.

The IoT device was emulated by using an Arduino device. It was pro-

grammed to run a software code that puts the device on each of the 5 states

chosen by the user. While the device was running on each state, a 30 s long

EM trace was captured per state with a sample rate of 20 MHz using HackRF

102

5.3. EXPERIMENTAL EVALUATION

Figure 5.11: Confusion matrix of the IoT device state classifier.

SDR. The SDR was tuned into the 18th harmonic of the Arduino’s clock fre-

quency, i.e., 288 Mz. The H-loop antenna of the SDR was placed over the

processor of the device during data acquisition. Figure 5.10 illustrates the

PSD of the EM signals from IoT device in its different states. A neural network

classifier based on MLP architecture was selected to distinguish each state of

the IoT device. A non-overlapping sliding window with a width of 250 ms was

used to extract EM trace segments; subsequently converted to the frequency

domain. These windows were divided into bins and averaged within each bin

to produce a vector of 1,000 features that were considered as training and

testing samples for the ML classifier.

Figure 5.11 illustrates the confusion matrix of the classification results. The

classifier was able to achieve an average F1-score of 99% in distinguishing the

5 IoT device states. This indicates that a pre-trained model to identify internal

software states of the IoT device. For example, if it was identified that the

device is in the idle state at the time investigators arrived at the scene, it’s clear

that someone deliberately turned the device into idle state in order to stop it

103

5.4. DISCUSSION

from triggering the intruder alarm. In that case, fingerprints on the button of the

IoT device can potentially help to identify the insider. Once the ML classifier

was built, it is integrated into the EMvidence framework as a third-party ML

model for identifying internal state of the particular type of IoT devices.

5.4 Discussion

As modern digital forensic investigations are increasingly encountering IoT

data sources that provide vital information to solve cases, the need for non-

intrusive and reliable ways of inspecting IoT devices arises strongly. This

chapter highlighted the potential of EM-SCA techniques combined with ML

algorithms to tackle this problem. Using two representative IoT devices, a se-

ries of experiments were performed to demonstrate that the internal activities

of IoT devices can be identified with a significant reliability.

When cryptography-related events are being performed on IoT devices,

they can be identified through the EM radiation patterns with a considerable

accuracy. When multiple known firmware versions can run on an IoT device,

the exact version of the firmware can also be detected. Additionally, if the

firmware that is supposed to be running on an IoT device has been maliciously

modified, it can be detected with a high reliability. Finally, the internal be-

haviour of an IoT device can be identified through its EM radiation patterns as

well. In the experimental evaluations of this work, a variety of ML algorithms

were used to test classification capability of EM radiation patterns, such as

MLP, LSTM, and SVM algorithms. The exact choice of an ML algorithm can

depend on various factors, such as the number of classes that need to classi-

fied, the amount of available datasets for training and testing models, and the

limit of the computational resources available to process EM data.

The findings of this chapter can be used to build plug-ins for the EMvidence

framework by incorporating pretrained ML models to detect interesting internal

information of IoT devices in forensic context.

104

Chapter 6

Curse of Dimensionality:

Increasing the Efficiency of

EMvidence

6.1 Introduction

The methods introduced and evaluated in Chapter 5 prove that important

forensic insights can be acquired from IoT devices through their EM radiation.

The EM data for such analysis can be acquired from an investigative scene

and processed at a forensic laboratory with high computational resources.

However, there can be situations where the acquired EM data should be pro-

cessed on-the-spot in order to make important decisions based on the EM-

SCA outcome. This is where the ability to perform EM-SCA on moderately-

resourced computers becomes vital. To achieve that, the efficiency of EM-

SCA-based forensic insight-gathering methods need to be increased consid-

erably.

Processing EM data demands high computational resources due to several

reasons. Firstly, EM data are typically acquired using extremely fast sample

rates. Therefore, EM trace files are large in size and causes storage and

processing overhead, e.g., several gigabytes of EM data for an observation of

one minute. Secondly, EM data are acquired with high bandwidths to cover

105

6.2. CONSIDERATIONS FOR EXPERIMENTS

How efficient is a particular method?

Increasing
Efficiency

Approach 1:
Minimising Data

Production

Approach 2:
Selecting Useful

Channels

How does it affect the insight
gathering process?

Figure 6.1: The two experimental approaches to increase the efficiency of gathering
forensic insights.

as many information-leaking frequencies are possible. EM data acquired with

high bandwidths are highly dimensional. For example, EM data acquired with

a bandwidth of 20 MHz produces an STFT vector of 20,000 elements even

with a window size as small as 1 ms. As a consequence, when capturing and

analysing EM data on-site, large data storage space, memory, and processing

power are required on the analyst’s computer.

This chapter focuses on the challenge of increasing efficiency of gather-

ing forensic insights from IoT devices with the goal of making it possible to

perform on moderately-resourced computers. The rest of this chapter is or-

ganised as follows. Section 6.2 discusses the potential avenues available to

explore towards this objective. Firstly, Section 6.3 focuses on one of the two

approaches where the effect of reducing the data production is considered.

Secondly, Section 6.4 takes on the possibility of reducing the dimensionality of

EM data through intelligent channel selection. Finally, Section 6.5 discusses

the implications of the experimental findings of this chapter to the broader ob-

jective of leveraging EM-SCA for digital forensics of IoT devices.

6.2 Considerations for Experiments

In order to increase the efficiency of gathering forensic insights, two ex-

perimental approaches can be considered (see Figure 6.1). The first ap-

proach is the reduction of the amount of EM data produced by SDR hard-

106

6.3. APPROACH 1: MINIMISING DATA PRODUCTION

ware and intermediate data produced by preprocessing stages. By doing

so, it is expected to minimise the amount of computational and storage re-

sources such large datasets demand. The second approach is the intelligent

selection of information-leaking channels from highly dimensional EM data.

With reduced dimensionality, the execution time of ML-based forensic insight-

gathering methods can be reduced and hence the efficiency of the entire pro-

cess can be increased.

6.3 Approach 1: Minimising Data Production

The large amount of EM data produced by SDR devices and preprocessing

stages is one of the reasons for the inefficiencies in forensic insight gathering

using EM-SCA. As the first approach, this section explores the possibility of

reducing the EM data production. Towards this goal, three aspects are evalu-

ated experimentally: the processing overhead, the storage overhead and the

transmission overhead of EM data.

6.3.1 Electromagnetic Data Processing Overhead

The methods for gathering forensic insights face a processing overhead due

to the amount of EM data that are available to be processed. These EM data

are typically consumed through a sliding window that goes across each EM

trace [177]. It is interesting to evaluate whether fine adjustments to the sliding

window can help the forensic insight-gathering methods to relieve from real-

time EM data processing overhead. Therefore, the following experiment was

conducted to evaluate effect of sliding windows in real-time EM data process-

ing.

A HackRF SDR device was configured to sample EM radiation from an IoT

device at 20 MHz sample rate. The produced I/Q data stream was directed to

a Python script that extracts small segments of EM data using a sliding win-

dow. The size of the sliding window was fixed to 10 ms. The data collection

duration was set to 10 s. Now, a set of EM data acquisition trials were con-

ducted each with a unique sliding window step size. The sliding window step

107

6.3. APPROACH 1: MINIMISING DATA PRODUCTION

2 4 6 8 10
Sliding Window Step Size (ms)

1000

2000

3000

4000

5000

Nu
m

be
r o

f W
in

do
ws

Figure 6.2: The variation of the number of sliding windows produced against the
sliding window step size.

sizes considered were 0.5, 1, 2, 4, 6, 8, and 10 ms. The number of sliding

windows produced in each trial were plot against the sliding window step size

(see Figure 6.2).

Smaller sliding window step sizes produce an extremely large number of

windows that should be processed. This can significantly increase the pro-

cessing overhead for the forensic insight-gathering methods. Therefore, it

would be desirable to increase the sliding window step size – making it equal

to the window size – to maintain the rate of sliding window production at a low

enough level to be manageable. However, on the other hand, an overlapping

sliding window is useful for ML-based classifiers to increase the chance of de-

tecting a specific pattern in the signal. In that sense, it is desirable to keep the

sliding window step size smaller than the window size itself.

Under these circumstances, there may be an optimal sliding window size

and a sliding window step size for each forensic insight-gathering method.

However, this optimal size can differ across methods, making it impossible to

set a generalised size, which would work for all the forensic insight-gathering

methods.

108

6.3. APPROACH 1: MINIMISING DATA PRODUCTION

6.3.2 Electromagnetic Data Storage Overhead

When capturing EM data using an SDR device, the use of extremely fast sam-

ple rates is necessary to increase the amount of information it captures. When

these data are saved into files, the sizes of files are considerably large even for

small time windows. For instance, consider a scenario where a HackRF SDR

is capturing EM data on 20 MHz sample rate for a period of 1 minute. Each

sample generated by the HackRF device through GNURadio library consists

of two 32 bit floating-point values representing Quadrature and In-phase com-

ponents of the sample in I/Q interleaved stream format. This means, each I/Q

sample is 8 bytes long. Therefore, the size of the 1 minute signal capture is

approximately 9 GB (8 bytes × 20 MHz × 60 s ≈ 8.94 GB). In order to apply

EM-SCA techniques and machine learning algorithms, thousands of such EM

traces are required – making the management of data extremely challenging.

Similar to the sample rate, the use of a large bandwidth is necessary in EM

data acquisition. This is because, usually, information-leaking signals occur

as multiple side-bands around the CPU clock frequency of the IoT device. A

larger data acquisition bandwidth helps to capture these side-bands.

Under these circumstances, it would be desirable to use a lower sample

rate while using a large bandwidth during EM data acquisition. Unfortunately,

these are contradicting requirements due to the inherent characteristics of

SDR devices, i.e., the sample rate and bandwidth are the same in SDRs. One

potential solution to achieve this requirement is collecting EM data with the

highest possible sample rate/bandwidth and then down-sampling the data be-

fore saving into EM trace files. However, the question arises whether such

down-sampling affects the methods that extract forensic insights using ML

classifiers.

In order to evaluate the correlation between sample rate of EM data and

the classification accuracy of ML classifiers, the following experiment was con-

ducted. EM traces were captured for 4 different programs running on an Ar-

duino device using a sample rate of 20 MHz. After capturing 600 EM traces

per each program, the trace files were down-sampled in order to create new

sets of EM trace files that have various sample rates; namely 16, 12, 8, 4, 3,

109

6.3. APPROACH 1: MINIMISING DATA PRODUCTION

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Sample Rate (MHz)

60

65

70

75

80

85

90

95

100

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

 (%
)

Figure 6.3: The effect of EM trace sample rate to the signal classification accuracy
when used with 4 class classifier to identify four different Arduino programs.

2, 1, and 0.5 MHz. Using each dataset (representing its unique sample rate)

a neural network-based classifier was trained and tested. After conducting a

10-fold cross-validation for each classifier, the mean F1-score was taken along

with the 95% confidence interval.

Figure 6.3 illustrates the variation of classification accuracy against the

sample rate. It is evident that the classification accuracy is not affected by

sample rates as low as 4 MHz. However, when the sample rate goes below

4 MHz, the classification accuracy plummets along with a significant increase

in the error margin, depicted in red in Figure 6.3. Considering the maximum

sample rate of the HackRF, i.e., 20 MHz, and the lowest possible sample rate

that did not adversely affect the classification accuracy in this experiment, i.e.,

4 MHz, it is possible to save 80% of the previously required storage space to

store the EM data.

This result indicates that it is possible to use a large bandwidth and a lower

sample rate without negatively affecting the performance of classification algo-

110

6.3. APPROACH 1: MINIMISING DATA PRODUCTION

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Sample Rate (MHz)

5

10

15

20

25

30

35

40

Pr
oc

es
sin

g
De

la
y

(m
s)

Figure 6.4: The variation of EM data processing overhead against sample rate when
used with 4 class classifier to identify four different Arduino programs.

rithms. The lowest possible sample rate has to be decided when constructing

an ML model. This could be a significant advantage when capturing EM data

in on-site usage scenarios with portable equipment.

6.3.3 Electromagnetic Data Transmission Overhead

The experiment described in Subsection 6.3.2 used EM data captured and

saved into I/Q interleaved data files, which were later processed and used to

train several ML classifiers. However, when using such ML-assisted EM-SCA

methods for the live forensic analysis of IoT devices, real-time preprocessing

and transfer of data into ML algorithms is necessary. This is a challenging task

since data preprocessing and classification tasks have to be performed within

a tight time window in order to keep up with the real-time I/Q data stream.

When delivering EM samples in real-time from SDR devices to multiple com-

ponents of software system, TCP sockets are commonly used [48]. Therefore,

111

6.4. APPROACH 2: SELECTING USEFUL CHANNELS

in order to maintain a stable real-time data processing system, the data pre-

processing and ML stages must perform faster than the TCP retransmission

timeout. On a Linux system, this timeout is typically set to 200 ms and incre-

mented at each timeout up to 15 times [181].

In order to evaluate this aspect, the experiment presented in Subsec-

tion 6.3.2 was extended to measure the preprocessing and classification delay

of the same classifier against varying sample rates of EM data. Figure 6.4 illus-

trates the variation of this preprocessing and classification delay of captured

data against the sample rate of the SDR device. It is evident that the delay

increases linearly with the sample rate. Even at the highest sample rate of

the HackRF SDR, i.e., 20 MHz, the processing delay does not exceed 40 ms,

which is well below the TCP retransmission timeout. Although the classifica-

tion delay of ML algorithms may differ depending on the type of the algorithm

and its configuration, this result provides a confidence that fast sample rates

do not cause any considerable burden to the I/Q data transmission across TCP

sockets to multiple ML models for the parallel acquisition of forensic insights.

6.4 Approach 2: Selecting Useful Channels

The experiments performed in the first approach of this chapter have shown

that the reduction of sample rate is a viable option for classification scenarios

with a smaller number of classes. However, with increasing number of classes,

the decrease of sample rate may cause the acquired dataset to lose vital in-

formation that are necessary to perform accurate predictions. Therefore, it is

desirable to keep the sample rate at the highest possible level and use alter-

natives to increase the efficiency of ML. The second approach considered in

this section is selecting useful channels from the already acquired data with

high sample rates.

While there is a large number of frequency channels that can potentially

carry information about the activity of a device’s MCU, typically a small subset

of them are useful [85]. There can be channels that carry redundant infor-

mation while some others may not leak any information at all. Therefore, the

112

6.4. APPROACH 2: SELECTING USEFUL CHANNELS

0.000 0.002 0.004 0.006 0.008 0.010
Time (s)

2.800

2.825

2.850

2.875

2.900

2.925

2.950

2.975

Fr
eq

ue
nc

y
(M

Hz
)

1e8

80

70

60

50

40

30

Figure 6.5: Spectrogram of the observed EM signal from DUT

identification of frequency channels that are useful out of the large number of

available channels can improve the efficiency of performing EM-SCA. In order

to address this problem, this work presents a systematic methodology to iden-

tify information-leaking frequency channels from high dimensional EM data,

essentially reducing dimensionality.

When listening to the EM radiation of the CPU of a computing device, the

system clock frequency is typically considered as the key focus [90]. How-

ever, it is not possible to predetermine the exact frequency channel that leaks

information. In most practical scenarios, multiple frequencies closer to the

CPU clock frequency can leak information [58]. Due to this uncertainty of the

information-leaking frequency, it is necessary to observe EM radiation over a

wider bandwidth around the CPU clock frequency. For example, consider a

scenario of listening to the CPU of an IoT device running at 288 MHz. Signals

are sampled using an SDR device by tuning it to 288 MHz and setting the

bandwidth to 20 MHz. Consequently, the captured EM traces include signals

from 278 MHz to 298 MHz, as shown in Figure 6.5. Among this wide band

of signals, some will contain useful information while a majority are unlikely

to contain anything useful whatsoever. When listening to EM radiation of the

113

6.4. APPROACH 2: SELECTING USEFUL CHANNELS

0 200 400

0.02

0.00

0.02

Am
pl

itu
de

(a)

0 200 400

0.002

0.000

(b)

0 200 400
Timesteps

0.0001

0.0000

0.0001

Am
pl

itu
de

(c)

0 200 400
Timesteps

0.0075

0.0050

0.0025

0.0000
(d)

Figure 6.6: Waveform of some randomly selected channels of the EM dataset.

CPU of a device, it is important to have an SDR device that supports the fre-

quency in question. In the case of HackRF SDR that is used in this work, it is

possible to tune to any frequency between 1 MHz to 6 GHz, which is sufficient

in most practical scenarios [41].

The identification of information-leaking channels from a wide band of

channels is a challenge that an attacker needs to overcome in order to effi-

ciently perform EM-SCA. One potential approach is plotting randomly selected

channels and visually identifying the channels that have apparent changes

over time. Figure 6.6 illustrates some of such randomly selected channels of

EM data acquired from an IoT device. However, due to the availability of a

large number of channels to inspect, this is an arduous task and not realis-

tically feasible across the entire frequency range. Another potential method

of reducing the number of channels to inspect is breaking the frequency do-

main into equally-sized bins and then averaging the signals within each bin.

The weakness of this method is the possibility of having multiple information-

leaking channels in the same bin and getting them averaged. This likely results

114

6.4. APPROACH 2: SELECTING USEFUL CHANNELS

EM Traces Frequency
Domain

Real-Time
Data

SDR

Host
Computer

Fourier
Transform

DUT

Channel
Identification

EM-SCA with
Selected Channels

Offline
Data

Hardware Setup

Figure 6.7: The workflow to generate EM traces, identify channels, and finally perform
EM-SCA with selected channels.

in a loss of valuable information-leaking channels.

This work experimentally proposes to reduce the number of EM channels

from a large bandwidth through multiple channel selection techniques. Once

the information-leaking channels are identified for a particular device type,

real-time EM signals can be captured from IoT devices and only the identi-

fied useful subset of channels can be used for gathering forensic insights (see

Figure 6.7).

6.4.1 Procedure of Experiments

For testing channel selection methods, 10 programs running on an Arduino de-

vice, named as class 0 to class 9, were used to create an EM dataset. Code

Snippet 2 illustrates an example program used to produce the dataset. The

programs differ from each other from the number of for loops, however, keep-

ing the time complexity at O(n) on each. The choice of programs was made

with the goal of exploring the possibility of detecting even minor variations in

the code [96]. Therefore, the difference between two consecutive programs is

115

6.4. APPROACH 2: SELECTING USEFUL CHANNELS

1 /* Arduino test program */
2 void setup(){
3 }
4 void loop(){
5 for(int i=0, i<20, i++) { delay(10); }
6 for(int j=0, j<20, j++) { delay(10); }
7 /* further loops */
8 }

Code Snippet 2: An example Arduino program used to produce EM data for the
experiments.

maintained at a minimum. Since the scope of this work limits to IoT devices,

the number of possible programs that can occur on a device is limited. There-

fore, this experiment assumes that the programs that are being searched for

are known in the first place.

Although the Arduino’s system clock runs at 16 MHz, a higher harmonic

observed at 288 MHz was used when acquiring data in order to avoid external

noise sources. Initially, EM traces were acquired while the device is running

the 10 different programs repetitively. Each EM trace file contains a 500 ms

long observation with a sample rate of 20 MHz. Collected EM traces are con-

verted to the frequency domain through STFT function with a window size of

1 ms. The resulting dataset contains 20,000 individual frequency channels

representing each of the 10 programs of the IoT device across time.

This dataset is fed into a series of channel selection methods to identify

a limited set of information-leaking channels (see Figure 6.8). In the experi-

ments using the channel selection methods, 100 channels out of 20,000 (that

represents 0.5% of the total channels) were selected. The effectiveness of

the channel selection methods is evaluated by attempting to classify the 10

Arduino programs using the selected channels with the help of trained ML

models. For this purpose, Random Forests (RF) [182] classification algorithm

was used. RF models are fast and very accurate in prediction. Furthermore,

they can process datasets with noise and NaN (Not a Number) values. RF has

two main parameters: the number of created trees, i.e., estimators, and the

116

6.4. APPROACH 2: SELECTING USEFUL CHANNELS

EM Traces Random Forest
Classification

All the 20,000 Channels

Principal Component Analysis

Variance-based Selection

Average-based Selection

Variance of Average Selection

Recursive Feature Elimination

Statistical Property Selection

Channel Selection Approaches

Figure 6.8: The series of methods explored for channel selection.

depth of those trees. The final prediction is the majority vote among all the

created trees. In these experiments, all the RF methods use 500 estimators

and the trees have a maximum depth of 50 levels. The accuracy of the tested

models was the average after applying cross-validation with five partitions and

ten repetitions.

Whenever the average and variance were calculated in channel selection

methods, the outliers values were removed beforehand. Outliers were consid-

ered as those points that had a Z-score1 absolute value higher than 3. A close

inspection of the values of the 20,000 channels revealed that almost all of

their values are very close to zero. Experimentation demonstrated two things:

firstly, most channels have small variance and secondly, the average of all the

sample points of each channel is, in general, very low. With these first hand

insights, various experiments conducted and their results are outlined in the

following subsections.

1Z-scores are used in statistics to measure an observation’s deviation from the group’s
mean value [183]. They are also known as Altman Z scores due to their developer, Edward
Altman. According to the normal distribution table, 99% of the values will have an absolute
value of less than 3.

117

6.4. APPROACH 2: SELECTING USEFUL CHANNELS

6.4.2 Using 20,000 Channels

In this first experiment, a supervised ML model was created using all the avail-

able channels. The reason for this is to have a baseline for performance com-

parison with other channel selection methods. For a channel selection method

to be qualified as successful, the ML models built using the channels it se-

lected have to achieve a classification accuracy as good as or better than the

baseline accuracy. Due to the fact that the number of channels is very high,

5,000 trees were used in this experiment as opposed to the 500 trees used in

the rest of the experiments.

The results of the experiments are shown in Table 6.1 and the confusion

matrix of the results is shown in Figure 6.9. The average accuracy of the

experiments conducted is 0.9315, and the time to predict 2,004 samples was

7.7435 s. The results demonstrate that the accuracy for classes (0, 1, 2, 3,

4, 7 and 9) were 100% correct, for classes (5 and 8) are acceptable, but the

accuracy for class 6 is very low. The algorithm confuses class 6 with classes

5 and 8 quite often. If class 6 was not considered from the EM dataset when

building ML model, the overall accuracy it achieves is 0.9804.

Table 6.1: Average accuracy per class using the entire 20,000 channels.

Class Accuracy
0 1
1 1
2 1
3 1
4 1
5 0.9043
6 0.5129
7 1
8 0.9199
9 1

118

6.4. APPROACH 2: SELECTING USEFUL CHANNELS

Figure 6.9: The confusion matrix of classifying programs using all the channels.

0 20 40 60 80 100
Eigenvalues

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

Va
ria

nc
e

Figure 6.10: Variance (y-axis) of the top 100 eigenvalues (x-values) when applying
principal component analysis.

119

6.4. APPROACH 2: SELECTING USEFUL CHANNELS

6.4.3 Principal Component Analysis

In this second experiment, Principal Component Analysis (PCA) [184] was

applied, which uses a linear combination of weighted variables to drastically

reduce the number of features. The new features are linear combinations of

the previous ones and are called eigenvectors (also called principal compo-

nents). Each of the eigenvectors has an eigenvalue and they are ordered

according to this value in such a manner that the first components have more

information than the last ones (that can be rejected). Ideally, PCA will reduce

the feature space without losing significant information, which allows the cre-

ation of models in less time and with a higher accuracy. In Figure 6.10, the top

100 eigenvalues are presented that were used to create a predictive model.

Table 6.2: Average accuracy per class for the best 100 PCA components.

Class Accuracy
0 0.3438
1 0.2823
2 0.3882
3 0.1457
4 0.1373
5 0.0935
6 0.1768
7 0.2459
8 0.1375
9 0.1555

After running the experiments, the average accuracy of PCA was found

to be 0.1870, which is very poor. This is likely due to multiple reasons. The

original set of features is 20,000, which is very a high number for PCA. Further-

more, most of those original features are very low constant values. In addition

to that, the number of variables used is also considerably higher for PCA. The

results by class are depicted in Table 6.2. The low performance of PCA was

found to be not favourable and, therefore, was discarded.

120

6.4. APPROACH 2: SELECTING USEFUL CHANNELS

0 2500 5000 7500 10000 12500 15000 17500 20000
Channels

0.0

0.2

0.4

0.6

0.8

1.0

Va
ria

nc
e

1e 13

Figure 6.11: The variance (y-axis) of the 20,000 channels (x-axis). The limit of y-axis
is set to 10-13 in order to visualise lower values. However, the variance of 5th and 6th

channels are 0.000282 and 0.000222 respectively.

6.4.4 Channel Selection Based on the Variance

In this experiment, the variance for each channel was calculated and subse-

quently, the highest 100 were selected. Prior to calculating the variance, the

outliers were removed using Z-score as described in Subsection 6.4.1. The

spectrum of all the channels after calculating the variance is depicted in Fig-

ure 6.11. It is evident that the variance is very low for most channels. In order

to increase the visibility of the lower peaks, the limit of the y-axis is set to 10-13

in this figure. However, the variance of 5th and 6th channels are 0.000282 and

0.000222 respectively that goes beyond the limit of the y-axis.

During the experiments, the variance threshold was set to select at least

the top 100 channels with the highest variance. Accordingly, 103 channels

were selected by setting the threshold to 1.0632× 10-8. The selected channels

were saved in a matrix along with their class and an RF classifier was trained

to predict the classes. The average accuracy of the experiments is 0.5431.

This is substantially higher than the performance of the PCA experiment, i.e.,

0.1870, but still quite far from acceptable performance. The time for building

each RF model with 100 features was 1 m and 37 s. The performance per

121

6.4. APPROACH 2: SELECTING USEFUL CHANNELS

0 2500 5000 7500 10000 12500 15000 17500 20000
Channels

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

Av
er

ag
e

Figure 6.12: Average (y-axis) for each of the 20,000 channels (x-axis).

class is shown in Table 6.3.

Table 6.3: Average accuracy per class of the highest 103 channels ordered by vari-
ance.

Class Accuracy
0 0.6473
1 0.5965
2 0.5391
3 0.5882
4 0.8027
5 0.2684
6 0.3845
7 0.4830
8 0.6272
9 0.5058

6.4.5 Channel Selection based on the Average

After observing that the results of applying channel selection based on the

variance were not sufficient, a selection based on the average was explored;

again removing the outlier values as described in Subsection 6.4.1. The rea-

122

6.4. APPROACH 2: SELECTING USEFUL CHANNELS

soning behind this choice is that the channels that are active tend to have high

values while non-active channels stays closer to zero, most of the times. Fig-

ure 6.12 depicts different average values for the channels. After calculating

the average, a threshold of 6.9936 × 10-5 was set to select the highest 100

channels. The accuracy of the RF classifier was 0.5423, which was very sim-

ilar to the channel selection made on the basis of variance. The performance

per class is shown in Table 6.4.

Table 6.4: Average accuracy per class of the highest 100 channels ordered by aver-
age.

Class Accuracy
0 0.6555
1 0.6067
2 0.5197
3 0.5770
4 0.8025
5 0.2694
6 0.3696
7 0.4939
8 0.6288
9 0.5196

6.4.6 Applying Average per Class and Variance between the

Classes

In this experiment, the previous two approaches were combined to select

channels using both the variance and the average. As the first step, the av-

erage value of each channel per activity was calculated, removing the outlier

values. The original matrix has 20,000 rows (where each row represents a

channel) and 10,020 columns (where each column has the timestamp values

of each channel for a given class). The resulting matrix had the same num-

ber of rows (channels) but only 10 columns (one per class). The second step

was to calculate the variance between the average of the 10 classes for all the

channels, and the result is shown in Figure 6.13.

123

6.4. APPROACH 2: SELECTING USEFUL CHANNELS

0 2500 5000 7500 10000 12500 15000 17500 20000
Channels

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Va
ria

nc
e

of
 A

ve
ra

ge
s

1e 7

Figure 6.13: Variance between the average of each of the classes for all the channels.

It is evident that the resulting spectrum has much more diversity than the

the previous experiments where only the variance or only the average were

used. A variance threshold of 0.000033 was used to select the highest 100

channels from this result. Subsequently, the selected channels were used

to predict the corresponding classes using an RF classifier. As can be seen

in Table 6.5, the results of the experiments are much better than in previous

experiments. For this experiment, three different numbers of channels were

used. The average accuracy with the 10 higher channels is 0.5753, with the

100 higher channels is 0.9047 and with the 500 higher channels is 0.9395.

6.4.7 Applying Recursive Feature Elimination

The Recursive Feature Elimination (RFE) is a wrapper method, i.e., imple-

ments supervised models during its execution, for selecting features proposed

by Guyon et al. [185]. Initially, RFE creates a model using all the possible

attributes of the dataset. Then, each attribute is ranked according to its impor-

tance. Using these ranks, RFE rejects the weakest attributes and creates a

new model, whose performance is again evaluated. This process is repeated

until it reaches the minimum number of required features. In order to have

124

6.4. APPROACH 2: SELECTING USEFUL CHANNELS

Table 6.5: Average accuracy per class after calculating the variance between the
average per activity.

Class 10 Channels 100 Channels 500 Channels
0 0.8220 0.9995 1
1 0.7364 1 1
2 0.8019 1 1
3 0.9090 1 1
4 0.5613 0.9990 1
5 0.3531 0.7749 0.9351
6 0.3592 0.5135 0.5179
7 0.4028 1 1
8 0.3828 0.7603 0.9422
9 0.4247 1 1

Average 0.5753 0.9047 0.9395

Figure 6.14: The optimal number of features (model with highest performance) for
the RFE algorithm is 81 (marked with a red dot).

more reliable results, RFE applies cross-validation. As shown in Figure 6.14,

RFE gives a list of feature sets along with the corresponding model’s perfor-

mance. The optimal subset of features is selected from the results of the model

125

6.4. APPROACH 2: SELECTING USEFUL CHANNELS

Figure 6.15: The confusion matrix for the 10 Activities and 81 features, i.e., the opti-
mal number for RFE.

that demonstrates the highest performance according to the selected metric.

Various metrics, such as the accuracy, the Receiver Operating Characteristic

(ROC), and the F1-Score, can be used for this purpose. In this experiment,

the accuracy was used as the metric for the RFE method. The time it took to

complete the channel selection with RFE was approximately 16 hours.

The optimal number of channels selected by RFE was 81 channels. When

those channels were used to train and test an RF model, it achieved an accu-

racy of 0.9047. However, if the class 6 is removed, the performance improves

to 0.9503. The instances of class 6 in the dataset presents very similar values

to those of classes 5 and 8. Due to this reason, the RF model finds it difficult

to distinguish between them. The fact that such a high accuracy was achieved

even when the activities in the dataset are so similar encourages optimism

about being able to accurately differentiate real-world IoT firmware activities in

the future. Figure 6.15 illustrates the confusion matrix of the results. Table 6.6

illustrates the classification accuracy for the individual classes.

126

6.4. APPROACH 2: SELECTING USEFUL CHANNELS

Table 6.6: Average accuracy per class of the selected 81 channels by RFE.

Class Accuracy
0 0.9986
1 1
2 1
3 1
4 0.9994
5 0.768
6 0.5129
7 1
8 0.7868
9 1

6.4.8 Using a Time Window of 50 Timestamps

The application of a time window is a common practice when dealing with

time-series data in various problem domains [96, 177, 186, 187]. Compared

to a single data sample, a collection of data samples across a window can

contain more information, which can help to make better predictions. Based on

this reasoning, the following feature selection method was designed. Firstly,

a sliding window was used to extract segments of each channel of the EM

dataset. For each window of a channel, the following collection of statistical

metrics were calculated from both the time and the frequency domains:

• Time Domain: mean, standard deviation, root mean square, maximal

amplitude, minimal amplitude, median, number of zero-crossing, skew-

ness, kurtosis, first-quartile, third-quartile, and autocorrelation.

• Frequency Domain: mean frequency, median frequency, entropy, en-

ergy, principal frequency, and spectral centroid.

Table 6.7 illustrates the classification accuracy of the RF model. It is trained

using the data generated by a sliding window of 50 timestamps. The average

accuracy of the experiments were 0.8000. The low accuracy was probably due

to the fact that the model needs more samples to be trained. The application

of a time window reduces the number of samples available for training an ML

model.

127

6.4. APPROACH 2: SELECTING USEFUL CHANNELS

Table 6.7: Result of the experiments when applying a time window of 50 samples.

Class Accuracy
0 0.8857
1 0.9800
2 0.9500
3 0.9175
4 1.0000
5 0.5867
6 0.4255
7 0.8583
8 0.5467
9 0.9750

6.4.9 Summary of the Channel Selection Methods

Figure 6.16 summarises the results obtained with the channel selection meth-

ods. Channel selection with variance and average did not result in a sufficient

classification accuracy for the considered EM dataset of Arduino programs.

However, the average per class and variance between classes proved to be

effective with an accuracy of 93.95% by reducing the channel space to 500.

Furthermore, when applying the RFE method, the 10 classes were identified

with a 90.47% classification accuracy.

The performance of the classification is seriously undermined by the class

6 that achieved 51.35% classification accuracy. If this class is not consid-

ered, the accuracy of the models after applying the average together with the

variance will be 98.60% for 500 features and 94.81% for 100 features. It is

necessary to further study the factors of a software program that cause signif-

icantly distinguishable radiation pattern in unique channels. The difficulties of

distinguishing certain software programs, such as class 6, is only explainable

with a better understanding on such factors.

128

6.5. DISCUSSION

Avg+Var
500Ch 20kCh

Avg+Var
100Ch RFE

81Ch Window
100Ch Var

100Ch Avg
100Ch PCA

100Ch

Channel Selection Method

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

93.95 93.15 90.47 90.47
80.0

54.31 54.23

18.7

Figure 6.16: Summary of the experimental results with different techniques.

6.5 Discussion

This chapter focused on increasing the efficiency of forensic insight-gathering

methods from the EM radiation of IoT devices. Towards this objective, two ap-

proaches were considered separately. The fist approach is evaluating poten-

tial methods for minimising EM data production. The second approach is the

design and evaluation of potential methods to intelligently select information-

leaking channels from high-dimensional EM data, effectively reducing the di-

mensionality.

In the first approach, an experimental study was conducted to identify if the

overhead to EM data transmission, processing, and storage can be minimised.

Manipulations to real-time sliding window and sample rate during data acqui-

sition were considered as potential contributors to those three overheads. The

experiments revealed that the use of a faster real-time sliding window step size

can help to minimise processing overhead, however with the risk of having less

windows to make predictions. Similarly, the reduction of sample rate reduces

the the amount of EM data to be stored. However, it is important to identify the

minimum sample rate that does not harm the ML-based classification. The re-

duction of sample rate below a certain value can negatively affect the forensic

insight-gathering process.

129

6.5. DISCUSSION

The second approach, which considered intelligent channel selection

methods, indicates that high dimensional EM side-channel data can be re-

duced drastically to a manageable set of dimensions that are sufficient to ac-

curately identify software activities running on an IoT device. The evaluation of

this approach used an EM dataset representing 10 different programs running

on an IoT device. Starting with a dataset that consists of 20,000 dimensions,

a channel selection method successfully identified 500 information-leaking

channels. A dimensionality reduction of this scale can considerably improve

the storage, processing and ML-based prediction using large EM datasets.

The experimental findings of this chapter opens up an opportunity to build

plug-ins for the EMvidence framework, which can be executed very efficiently.

Due to the need of performing EM-SCA-based forensic inspection during the

triage examination phase of investigations, the capability to run the EMvidence

framework on a moderately-resourced computer, such as a laptop, comes in

handy.

130

Chapter 7

Conclusion & Future Work

7.1 Conclusion

With the ever-increasing applications of IoT systems in domestic and industrial

environments, digital forensic investigations increasingly require the extraction

of digital evidence from them. Most forensically-useful information in IoT de-

vices are currently extracted by intrusive inspections of hardware that makes

them less forensically sound [15]. The work presented in this thesis explored

the potential of leveraging EM-SCA methods as an alternative approach to

forensically inspect IoT devices. Towards this objective, three research ques-

tions were defined and studied experimentally.

Firstly, the question was raised whether it is possible to extract forensic

insights from IoT devices through EM-SCA. Addressing this question, it was

demonstrated that four types of forensic insights can be acquired from EM

radiation, i.e., cryptography-related events, firmware version, firmware modi-

fication, and device behavioural state. Previously, this type of information of

IoT devices could only be acquired by intrusive means, such as chip-off foren-

sics [13]. In contrast, the ML-assisted EM-SCA methods presented in this

work reduce the risk of tampering or permanently damaging the IoT evidence

sources during investigations.

The second question raised the concern whether it is possible to use such

EM-SCA methods on moderately-resourced computers during triage exami-

131

7.1. CONCLUSION

nation phase of an investigation. The experimental evaluation indicates that

there are two potential approaches to increase the efficiency of EM-SCA foren-

sic insight-gathering methods: the careful reduction of EM data sample rate

and the intelligent selection of information-leaking channels. The growing

amount of disparate data from different types of IoT devices has already been

causing inefficiencies in forensic investigations [7]. Similarly, the overhead of

the dimensionality and the size of EM data is a problem that obstructs the

use of EM-SCA methods in real-world IoT forensic investigations. The two

experimentally-evaluated approaches reduce this challenge to a manageable

extent.

Finally, the third research question focused on the discovery of a methodol-

ogy to use EM-SCA methods in the highly diverse and dynamic IoT ecosystem.

To address this question, this thesis presented the design of a novel IoT foren-

sic model. The proposed model facilitates the application of a large collec-

tion of EM-SCA methods in IoT investigations and enables the implementation

and the seamless integration of new EM-SCA methods into the methodology.

A proof-of-concept of the model was implemented as an open-source frame-

work called EMvidence. In contrast to the existing forensic models [4], the

proposed model enables the acquisition of forensic insights from IoT devices

during the triage examination phase in a non-intrusive fashion.

The experimental evaluations of this work were conducted on a specific

hardware setup, consisting of two representative IoT devices and an SDR

data acquisition equipment. Therefore, the exploration of detecting four types

of forensic insights was performed by emulating real-world IoT device scenar-

ios on the two representative hardware platforms. Similarly, the experimen-

tation on the efficiency of EM-SCA methods was performed by using an EM

dataset produced by the same hardware setup. Under these circumstances,

the successful real-world application of the experimental findings requires the

implementation of EMvidence plug-ins targeting specific real-world IoT de-

vices. Consequently, the experimentation on a diverse set of IoT platforms

is a necessary future step on the journey towards strengthening the reliability

and generalisability of the findings of this work.

132

7.1. CONCLUSION

7.1.1 Implications of This Work

The findings of this work have the following immediate implications in the do-

main of digital forensics.

7.1.1 Future of Digital Forensics

This work is the first attempt to bring EM-SCA into the digital forensics domain.

While IoT forensics has been identified as an important area for the progres-

sion of digital investigations, current work being published in the domain are

mostly limited and focuses on specific IoT devices. The rapid changes in the

IoT arena is difficult to be coped with using classical digital forensic approach.

The introduction of EM-SCA into the domain can rapidly change the way in-

vestigators and researchers are looking at IoT in the future.

7.1.2 Legal Acceptability

Forensic investigations require a substantial amount of reliability for digital ev-

idence to be admissible in a court of law without reasonable doubt. The capa-

bilities demonstrated with EM-SCA combined with the ML approach described

in this work need to be time-tested before being used as a reliable and court-

admissible evidence source. However, at the current stage, EM-SCA tech-

niques can provide helpful directions for an investigator in order to uncover

court-admissible evidence using classical forensic methods.

7.1.3 Platform for New Research

The entrance of newcomers into the research domain of EM-SCA for digital

forensics is currently obstructed by multiple barriers. Although the compo-

nents are available separately, such as SDR hardware, DSP and ML libraries

for programming languages, it involves a steep learning curve before getting

a working hardware and software setup ready for experimentation. The pro-

posed forensic model and its implementation, the EMvidence framework, fill

this gap and provides a starting point for newcomers to build and test new

research in the domain.

133

7.2. FUTURE WORK

7.2 Future Work

Based on the findings of this work, several future directions can be identified.

They are described in the following subsections in no particular order.

7.2.1 Evaluation of Commonly-used Internet of Things

The experimental demonstrations provided in this thesis used Arduino and

Raspberry Pi devices as representative IoT devices. The MCUs of the two de-

vices represent the higher and lower ends of IoT device hardware capabilities.

Therefore, experimental demonstration on these devices is sufficiently repre-

sentative of the IoT ecosystem. However, it is necessary to evaluate EMvi-

dence with the most commonly encountered IoT devices in real-world digital

forensic scenarios. A certain set of devices are frequently drawing the atten-

tion of digital forensic community due to their wide involvement in real-world

digital forensic investigations. One of such IoT device types is AI voice assis-

tants – among them, the most popular is Amazon Echo [14]. The sheer diver-

sity of the AI voice assistant devices themselves is making forensic analysis a

challenging task. Similarly, smart wearable devices such as fitness trackers,

and healthcare implants such as pacemakers have a high relevance in modern

IoT forensic arena [15]. Therefore, an important future work is to implement

a set of EMvidence plug-ins to cover such most commonly encountered IoT

devices in digital forensic investigations.

7.2.2 Interoperability between Evidence Sources

The digital forensics domain consists of multiple subdomains including file sys-

tem forensics, network forensics, cloud forensics, mobile forensics, and IoT

forensics. There are specialised tools used by investigators to acquire evi-

dence in each subdomain. As different tools are developed by different com-

panies or open-source communities, the formats used by them to produce

analysis results greatly differ from one another. As a result, conclusions drawn

in investigations by combining findings from different tools and aspects can

134

7.2. FUTURE WORK

cause ambiguities. This challenge of interoperability has been long identified

as a problem in the digital forensics community [188].

In recent years, a significant effort has been put to build a standardised

specification to represent information produced by various digital forensic tools

in different contexts. The results of this effort by the community is Cyber-

investigation Analysis Standard Expression (CASE) [189]. Various types of

investigation-related information can be represented in a common language

using the CASE standard. Recognising the necessity of it, digital forensic

tools currently in use are slowly building support for the CASE standard. Under

these circumstances, it is necessary to identify potential methods to make EM-

SCA-based IoT analysis results compatible with the CASE standard.

7.2.3 Management of Electromagnetic Data

The EM data produced by SDR hardware are stored in raw I/Q interleaved

sample format files. Depending on the sample rate and the duration of signal

observation, a single such EM data file can reach sizes over gigabytes. In

an investigative scenario, multiple such EM data files can be generated. Fur-

thermore, the investigator’s computer running an instance of the EMvidence

framework can contain EM data related to multiple investigations. The man-

agement of these EM datasets and their associated metadata is a challenge,

which can get worse with time. Therefore, it is necessary to develop meta-

data storage formats suitable for digital forensic investigation scenarios by aug-

menting existing standards, such as HDF5 [190], VITA-49 [191], SigMF [192],

and AFF4 [193].

7.2.4 Hardware Independence of Machine Learning Models

ML models trained to build EMvidence plug-ins currently rely on specific set-

tings of the SDR device. For example, parameters such as sampling rate,

bandwidth, level of signal amplification, and the exact positioning of the H-loop

antenna over DUT during signal acquisition can play an important role in the

final signal classification by training an ML model. Therefore, an ML model

135

7.2. FUTURE WORK

trained and tested on a particular SDR hardware setting may not currently

work on new data produced on different settings. Further research is nec-

essary to identify methods that generalise ML models between different data

acquisition settings.

7.2.5 Cryptographic Key Retrieval in Forensic Context

The experimental evaluations of this work have demonstrated that is it possible

to identify cryptography-related settings of an IoT device through analysing its

EM radiation. These cryptography-related events on a device can include en-

cryption/decryption of data stored on the device and communicated through

network interfaces. After identifying such cryptography-related settings of a

device, the next natural step that should be attempted is retrieving crypto-

graphic keys used by the device. While a large body of literature covers various

cryptographic key retrieval attacks using EM-SCA methods, performing such

attacks on forensic investigative scenarios with IoT devices found on-the-spot

has not yet been formally explored. Building EMvidence plug-ins that are ca-

pable of performing cryptographic key retrieval attacks is an interesting avenue

for future research. When doing so, the potential integration of already exist-

ing open-source toolchains, such as ChipWhisperer [138], with EMvidence is

worthy of further exploration.

136

Bibliography

[1] M. Scanlon, J. Farina, and M.-T. Kechadi, “Network Investigation

Methodology for BitTorrent Sync: A Peer-to-Peer Based File

Synchronisation Service,” Computers & Security, vol. 54, pp. 27 –

43, 10 2015. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S016740481500067X

[2] S. Soltani and S. A. H. Seno, “A Survey on Digital Evidence Collection

and Analysis,” in 7th International Conference on Computer and Knowl-

edge Engineering (ICCKE). IEEE, 2017, pp. 247–253.

[3] E. Casey, Digital Evidence and Computer Crime: Forensic Science,

Computers, and the Internet. Academic Press, 2011.

[4] X. Du, N.-A. Le-Khac, and M. Scanlon, “Evaluation of Digital Forensic

Process Models with Respect to Digital Forensics as a Service,” in Pro-

ceedings of the 16th European Conference on Cyber Warfare and Se-

curity (ECCWS 2017). Dublin, Ireland: ACPI, 06 2017, pp. 573–581.

[5] B. L. R. Stojkoska and K. V. Trivodaliev, “A Review of Internet of Things

for Smart Home: Challenges and Solutions,” Journal of Cleaner Produc-

tion, vol. 140, pp. 1454–1464, 2017.

[6] M. Chernyshev, S. Zeadally, Z. Baig, and A. Woodward, “Internet of

Things Forensics: The Need, Process Models, and Open Issues,” IT

Professional, vol. 20, no. 3, pp. 40–49, 2018.

[7] D. Quick and K.-K. R. Choo, “IoT Device Forensics and Data Reduction,”

IEEE Access, vol. 6, pp. 47 566–47 574, 2018.

137

http://www.sciencedirect.com/science/article/pii/S016740481500067X
http://www.sciencedirect.com/science/article/pii/S016740481500067X

BIBLIOGRAPHY

[8] I. Yaqoob, I. A. T. Hashem, A. Ahmed, S. A. Kazmi, and C. S. Hong,

“Internet of Things Forensics: Recent Advances, Taxonomy, Require-

ments, and Open Challenges,” Future Generation Computer Systems,

vol. 92, pp. 265–275, 2019.

[9] R. K. Lomotey, J. C. Pry, and C. Chai, “Traceability and Visual Analytics

for the Internet of Things (IoT) Architecture,” World Wide Web, vol. 21,

no. 1, pp. 7–32, 2018.

[10] D. Lillis, B. Becker, T. O’Sullivan, and M. Scanlon, “Current Challenges

and Future Research Areas for Digital Forensic Investigation,” in The

11th ADFSL Conference on Digital Forensics, Security and Law (CDFSL

2016). Daytona Beach, FL, USA: ADFSL, 05 2016, pp. 9–20.

[11] R. Torrance and D. James, “The State-of-the-Art in IC Reverse Engi-

neering,” in Cryptographic Hardware and Embedded Systems-CHES

2009. Springer, 2009, pp. 363–381.

[12] F. Courbon, S. Skorobogatov, and C. Woods, “Reverse Engineering

Flash EEPROM Memories using Scanning Electron Microscopy,” in In-

ternational Conference on Smart Card Research and Advanced Appli-

cations. Springer, 2016, pp. 57–72.

[13] S. Watson and A. Dehghantanha, “Digital Forensics: The Missing Piece

of the Internet of Things Promise,” Computer Fraud & Security, vol.

2016, no. 6, pp. 5–8, 2016.

[14] S. Li, K.-K. R. Choo, Q. Sun, W. J. Buchanan, and J. Cao, “IoT Foren-

sics: Amazon Echo as a Use Case,” IEEE Internet of Things Journal,

vol. 6, no. 4, pp. 6487–6497, 2019.

[15] M. Stoyanova, Y. Nikoloudakis, S. Panagiotakis, E. Pallis, and E. K.

Markakis, “A Survey on the Internet of Things (IoT) Forensics: Chal-

lenges, Approaches and Open Issues,” IEEE Communications Surveys

& Tutorials, 2020.

138

BIBLIOGRAPHY

[16] R. Poussier, V. Grosso, and F.-X. Standaert, “Comparing Approaches

to Rank Estimation for Side-Channel Security Evaluations,” in Interna-

tional Conference on Smart Card Research and Advanced Applications.

Springer, 2015, pp. 125–142.

[17] E. Peeters, F.-X. Standaert, and J.-J. Quisquater, “Power and Electro-

magnetic Analysis: Improved Model, Consequences and Comparisons,”

Integration, the VLSI journal, vol. 40, no. 1, pp. 52–60, 2007.

[18] S. Wakabayashi, S. Maruyama, T. Mori, S. Goto, M. Kinugawa, and Y.-i.

Hayashi, “Poster: Is Active Electromagnetic Side-channel Attack Prac-

tical?” in Proceedings of the 2017 ACM SIGSAC Conference on Com-

puter and Communications Security. ACM, 2017, pp. 2587–2589.

[19] M. Randolph and W. Diehl, “Power Side-Channel Attack Analysis: A

Review of 20 Years of Study for the Layman,” Cryptography, vol. 4, no. 2,

p. 15, 2020.

[20] “Unix Philosophy,” wikipedia.org, Accessed: 2020-07-26. [Online].

Available: https://en.wikipedia.org/wiki/Unix_philosophy

[21] P. Suresh, J. V. Daniel, V. Parthasarathy, and R. Aswathy, “A State of

the Art Review on the Internet of Things (IoT) History, Technology and

Fields of Deployment,” in 2014 International Conference on Science En-

gineering and Management Research (ICSEMR). IEEE, 2014, pp. 1–8.

[22] A. Tewari and B. Gupta, “Security, Privacy and Trust of Different Layers

in Internet-of-Things (IoTs) Framework,” Future Generation Computer

Systems, vol. 108, pp. 909–920, 2020.

[23] K. A. Townsend, J. W. Haslett, T. K.-K. Tsang, M. N. El-Gamal, and

K. Iniewski, “Recent Advances and Future Trends in Low Power Wire-

less Systems for Medical Applications,” in Fifth International Workshop

on System-on-Chip for Real-Time Applications (IWSOC’05). IEEE,

2005, pp. 476–481.

139

https://en.wikipedia.org/wiki/Unix_philosophy

BIBLIOGRAPHY

[24] A. Rayes and S. Salam, “Internet of Things from Hype to Reality,”

The Road to Digitization; River Publisher Series in Communications;

Springer: Basel, Switzerland, vol. 49, 2017.

[25] S. S. I. Samuel, “A Review of Connectivity Challenges in IoT Smart

Home,” in 2016 3rd MEC International Conference on Big Data and

Smart City (ICBDSC). IEEE, 2016, pp. 1–4.

[26] H. Kharrufa, H. A. Al-Kashoash, and A. H. Kemp, “RPL-based Routing

Protocols in IoT Applications: A Review,” IEEE Sensors Journal, vol. 19,

no. 15, pp. 5952–5967, 2019.

[27] OpenText Security, “EnCase Forensic,” guidancesoftware.com, Ac-

cessed: 2020-08-13. [Online]. Available: https://www.guidancesoftware.

com/encase-forensic

[28] B. Carrier, “The Sleuth Kit,” sleuthkit.org, Accessed: 2020-08-13.

[Online]. Available: https://sleuthkit.org

[29] M. S. Ahmad, N. E. Musa, R. Nadarajah, R. Hassan, and N. E. Othman,

“Comparison between Android and iOS Operating System in Terms of

Security,” in 8th International Conference on Information Technology in

Asia (CITA). IEEE, 2013, pp. 1–4.

[30] A. MacDermott, T. Baker, and Q. Shi, “IoT Forensics: Challenges For

the IoA Era,” in New Technologies, Mobility and Security (NTMS), 2018

9th IFIP International Conference on. IEEE, 2018, pp. 1–5.

[31] E. Casey and G. J. Stellatos, “The Impact of Full Disk Encryption on

Digital Forensics,” ACM SIGOPS Operating Systems Review, vol. 42,

no. 3, pp. 93–98, 2008.

[32] A. W. Fritzke, “Obfuscating Against Side-Channel Power Analysis Us-

ing Hiding Techniques for AES,” Master’s thesis, Air Force Institute of

Technology, Wright-Patterson Air Force Base, Ohio, 2012.

[33] E. A. Vincze, “Challenges in Digital Forensics,” Police Practice and Re-

search, vol. 17, no. 2, pp. 183–194, 2016.

140

https://www.guidancesoftware.com/encase-forensic
https://www.guidancesoftware.com/encase-forensic
https://sleuthkit.org

BIBLIOGRAPHY

[34] X. Lin, Introductory Computer Forensics: A Hands-on Practical Ap-

proach. Springer, 2018.

[35] S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal Pro-

cessing. California Technical Publishing, 1997, ch. 28.

[36] A. B. Downey, Think DSP: Digital Signal Processing in Python. O’Reilly

Media, Inc., 2016.

[37] R. Tessier and W. Burleson, “Reconfigurable Computing for Digital Sig-

nal Processing: A Survey,” Journal of VLSI signal processing systems

for signal, image and video technology, vol. 28, no. 1-2, pp. 7–27, 2001.

[38] A. M. Wyglinski, R. Getz, T. Collins, and D. Pu, Software-Defined Radio

for Engineers. Artech House, 2018.

[39] W. H. Tuttlebee, Software Defined Radio: Enabling Technologies. John

Wiley & Sons, 2003.

[40] S. Cass, “A $40 Software-defined Radio,” IEEE Spectrum, vol. 50, no. 7,

pp. 22–23, 2013.

[41] M. Ossmann, “HackRF,” greatscottgadgets.com, Accessed: 2020-08-

29. [Online]. Available: https://greatscottgadgets.com/hackrf/

[42] T. A. Milligan, Modern Antenna Design. John Wiley & Sons, 2005.

[43] RF Explorer, “RF Explorer Near Field Antenna Kit Datasheet,”

RF Explorer, Spain, Tech. Rep., 2017. [Online]. Available: http:

//j3.rf-explorer.com

[44] P. Juyal, S. Adibelli, N. Sehatbakhsh, and A. Zajic, “A Directive Antenna

based on Conducting Disks for Detecting Unintentional EM Emissions

at Large Distances,” IEEE Transactions on Antennas and Propagation,

vol. 66, no. 12, pp. 6751–6761, 2018.

[45] A. Csete, “GQRX SDR Open Source Software Defined Radio,” gqrx.dk,

Accessed: 2020-06-29. [Online]. Available: https://gqrx.dk/

141

https://greatscottgadgets.com/hackrf/
http://j3.rf-explorer.com
http://j3.rf-explorer.com
https://gqrx.dk/

BIBLIOGRAPHY

[46] “SDR# Software,” airspy.com, Accessed: 2020-06-29. [Online].

Available: https://airspy.com/download/

[47] E. Blossom, “GNU Radio: Tools for Exploring the Radio Frequency

Spectrum,” Linux Journal, vol. 2004, no. 122, p. 4, 2004.

[48] “Tutorial: GNU Radio Companion,” gnuradio.org, Accessed: 2020-

06-29. [Online]. Available: https://wiki.gnuradio.org/index.php/Guided_

Tutorial_GRC

[49] National Instruments, “White Paper: What is I/Q Data?” ni.com,

Accessed: 2020-06-29. [Online]. Available: http://www.ni.com/tutorial/

4805/en/

[50] C. D. O’Connell, “Exploiting Quasiperiodic Electromagnetic Radiation

using Software-defined Radio,” Ph.D. dissertation, University of Cam-

bridge, 2019.

[51] J. C. Maxwell, “A Dynamical Theory of the Electromagnetic Field,” Philo-

sophical transactions of the Royal Society of London, vol. 155, pp. 459–

512, 1865.

[52] M. Jabbar and M. A. Rahman, “Radio Frequency Interference of Electric

Motors and Associated Controls,” IEEE Transactions on Industry Appli-

cations, vol. 27, no. 1, pp. 27–31, 1991.

[53] R. Getz and B. Moeckel, “Understanding and Eliminating EMI in

Microcontroller Applications,” National Semiconductor, Tech. Rep.,

1996. [Online]. Available: https://www.ti.com/lit/an/snoa382/snoa382.

pdf

[54] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in Advances

in Cryptology (CRYPTO ‘99). Springer, 1999, pp. 789–789.

[55] P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, “Introduction to Differential

Power Analysis,” Journal of Cryptographic Engineering, vol. 1, no. 1, pp.

5–27, 2011.

142

https://airspy.com/download/
https://wiki.gnuradio.org/index.php/Guided_Tutorial_GRC
https://wiki.gnuradio.org/index.php/Guided_Tutorial_GRC
http://www.ni.com/tutorial/4805/en/
http://www.ni.com/tutorial/4805/en/
https://www.ti.com/lit/an/snoa382/snoa382.pdf
https://www.ti.com/lit/an/snoa382/snoa382.pdf

BIBLIOGRAPHY

[56] E. Brier, C. Clavier, and F. Olivier, “Correlation Power Analysis with a

Leakage Model,” in International Workshop on Cryptographic Hardware

and Embedded Systems. Springer, 2004, pp. 16–29.

[57] P. Robyns, P. Quax, and W. Lamotte, “Improving CEMA using Correla-

tion Optimization,” IACR Transactions on Cryptographic Hardware and

Embedded Systems, pp. 1–24, 2019.

[58] G. Camurati, S. Poeplau, M. Muench, T. Hayes, and A. Francillon,

“Screaming Channels: When Electromagnetic Side Channels Meet Ra-

dio Transceivers,” in Proceedings of the 25th ACM Conference on Com-

puter and Communications Security (CCS), ser. CCS ’18. ACM, Octo-

ber 2018.

[59] A. Géron, Hands-on Machine Learning with Scikit-Learn, Keras, and

TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Sys-

tems. O’Reilly Media, 2019.

[60] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,

2006.

[61] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-

plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-

esnay, “Scikit-Learn: Machine Learning in Python,” Journal of Machine

Learning Research, vol. 12, pp. 2825–2830, 2011.

[62] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An Imper-

ative Style, High-performance Deep Learning Library,” in Advances in

Neural Information Processing Systems, 2019, pp. 8026–8037.

[63] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A System for Large-

scale Machine Learning,” in 12th {USENIX} Symposium on Operating

Systems Design and Implementation ({OSDI} 16), 2016, pp. 265–283.

143

BIBLIOGRAPHY

[64] J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestré, J.-J. Quisquater, and J.-

L. Willems, “A Practical Implementation of the Timing Attack,” in Interna-

tional Conference on Smart Card Research and Advanced Applications.

Springer, 1998, pp. 167–182.

[65] D. Brumley and D. Boneh, “Remote Timing Attacks are Practical,” Com-

puter Networks, vol. 48, no. 5, pp. 701–716, 2005.

[66] P. C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman,

RSA, DSS, and Other Systems,” in Annual International Cryptology Con-

ference. Springer, 1996, pp. 104–113.

[67] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-tenant

Side-Channel Attacks in PaaS Clouds,” in Proceedings of the 2014

ACM SIGSAC Conference on Computer and Communications Security.

ACM, 2014, pp. 990–1003.

[68] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level Cache

Side-Channel Attacks are Practical,” in IEEE Symposium on Security

and Privacy. IEEE, 2015, pp. 605–622.

[69] S. J. O’Malley and K.-K. R. Choo, “Bridging the Air Gap: Inaudible Data

Exfiltration by Insiders,” in 20th Americas Conference on Information

Systems (AMCIS). Association for Information Systems, 2014.

[70] D. Genkin, A. Shamir, and E. Tromer, “RSA Key Extraction via Low-

bandwidth Acoustic Cryptanalysis,” in International Cryptology Confer-

ence. Springer, 2014, pp. 444–461.

[71] W. Van Eck, “Electromagnetic Radiation from Video Display Units: An

Eavesdropping Risk?” Computers & Security, vol. 4, no. 4, pp. 269–286,

1985.

[72] M. G. Kuhn and R. J. Anderson, “Soft Tempest: Hidden Data Transmis-

sion using Electromagnetic Emanations,” in International Workshop on

Information Hiding. Springer, 1998, pp. 124–142.

144

BIBLIOGRAPHY

[73] Z. Hongxin, H. Yuewang, W. Jianxin, L. Yinghua, and Z. Jinling, “Recog-

nition of Electromagnetic Leakage Information from Computer Radiation

with SVM,” Computers & Security, vol. 28, no. 1-2, pp. 72–76, 2009.

[74] F. Elibol, U. Sarac, and I. Erer, “Realistic Eavesdropping Attacks on

Computer Displays with Low-cost and Mobile Receiver System,” in Sig-

nal Processing Conference (EUSIPCO), 2012 Proceedings of the 20th

European. IEEE, 2012, pp. 1767–1771.

[75] A. Zankl, H. Seuschek, G. Irazoqui, and B. Gulmezoglu, “Side-Channel

Attacks in the Internet of Things: Threats and Challenges,” in Solutions

for Cyber-Physical Systems Ubiquity. IGI Global, 2018, pp. 325–357.

[76] D. Agrawal, J. R. Rao, and P. Rohatgi, “Multi-Channel Attacks,” in In-

ternational Workshop on Cryptographic Hardware and Embedded Sys-

tems (CHES). Springer, 2003, pp. 2–16.

[77] H. W. Ott, Electromagnetic Compatibility Engineering. John Wiley &

Sons, 2011.

[78] H. Wolfe, “Setting up an Electronic Evidence Forensics Laboratory,”

Computers & Security, vol. 22, no. 8, pp. 670–672, 2003.

[79] M. Ettus and M. Braun, “The Universal Software Radio Peripheral

(USRP) Family of Low-cost SDR,” Opportunistic Spectrum Sharing and

White Space Access: The Practical Reality, pp. 3–23, 2015.

[80] R. Callan, A. Zajić, and M. Prvulovic, “A Practical Methodology for Mea-

suring the Side-Channel Signal Available to the Attacker for Instruction-

level Events,” in Proceedings of the 47th Annual IEEE/ACM International

Symposium on Microarchitecture. IEEE Computer Society, 2014, pp.

242–254.

[81] A. Zajic and M. Prvulovic, “Experimental Demonstration of Electromag-

netic Information Leakage from Modern Processor-memory Systems,”

IEEE Transactions on Electromagnetic Compatibility, vol. 56, no. 4, pp.

885–893, 2014.

145

BIBLIOGRAPHY

[82] R. Callan, A. Zajić, and M. Prvulovic, “FASE: Finding Amplitude-

modulated Side-Channel Emanations,” in ACM SIGARCH Computer Ar-

chitecture News, vol. 43, no. 3. ACM, 2015, pp. 592–603.

[83] M. Prvulovic, A. Zajić, R. L. Callan, and C. J. Wang, “A Method for

Finding Frequency-Modulated and Amplitude-Modulated Electromag-

netic Emanations in Computer Systems,” IEEE Transactions on Elec-

tromagnetic Compatibility, vol. 59, no. 1, pp. 34–42, 2017.

[84] B. B. Yilmaz, R. L. Callan, M. Prvulovic, and A. Zajić, “Capacity of the

EM Covert/Side-Channel Created by the Execution of Instructions in a

Processor,” IEEE Transactions on Information Forensics and Security,

vol. 13, no. 3, pp. 605–620, 2018.

[85] G. Laput, C. Yang, R. Xiao, A. Sample, and C. Harrison, “EM-Sense:

Touch Recognition of Uninstrumented, Electrical and Electromechanical

Objects,” in Proceedings of the 28th Annual ACM Symposium on User

Interface Software & Technology. ACM, 2015, pp. 157–166.

[86] A. Bianchi and I. Oakley, “Wearable Authentication: Trends and Oppor-

tunities,” IT - Information Technology, vol. 58, no. 5, pp. 255–262, 2016.

[87] C. Yang and A. P. Sample, “EM-ID: Tag-less Identification of Electrical

Devices via Electromagnetic Emissions,” in IEEE International Confer-

ence on RFID (RFID). IEEE, 2016, pp. 1–8.

[88] K. Yang, M. Hicks, Q. Dong, T. Austin, and D. Sylvester, “Exploiting the

Analog Properties of Digital Circuits for Malicious Hardware,” Communi-

cations of the ACM, vol. 60, no. 9, pp. 83–91, 2017.

[89] M. M. Ahmed, D. Hely, N. Barbot, R. Siragusa, E. Perret, M. Bernier, and

F. Garet, “Radiated Electromagnetic Emission for Integrated Circuit Au-

thentication,” IEEE Microwave and Wireless Components Letters, 2017.

[90] R. Callan, F. Behrang, A. Zajic, M. Prvulovic, and A. Orso, “Zero-

overhead Profiling via EM Emanations,” in Proceedings of the 25th In-

146

BIBLIOGRAPHY

ternational Symposium on Software Testing and Analysis. ACM, 2016,

pp. 401–412.

[91] R. L. Callan, “Analyzing Software using Unintentional Electromagnetic

Emanations from Computing Devices,” Ph.D. dissertation, Georgia Insti-

tute of Technology, 2016.

[92] Y. Han, S. Etigowni, H. Liu, S. Zonouz, and A. Petropulu, “Watch Me,

but Don’t Touch Me! Contactless Control Flow Monitoring via Electro-

magnetic Emanations,” in Proceedings of the 2017 ACM SIGSAC Con-

ference on Computer and Communications Security. ACM, 2017, pp.

1095–1108.

[93] T. Espitau, P.-A. Fouque, B. Gérard, and M. Tibouchi, “Side-Channel

Attacks on BLISS Lattice-Based Signatures: Exploiting Branch Trac-

ing against strongSwan and Electromagnetic Emanations in Microcon-

trollers,” in Proceedings of the 2017 ACM SIGSAC Conference on Com-

puter and Communications Security. ACM, 2017, pp. 1857–1874.

[94] B. D. Stone and S. J. Stone, “Radio Frequency-based Reverse En-

gineering of Microcontroller Program Execution,” in 2015 National

Aerospace and Electronics Conference (NAECON). IEEE, 2015, pp.

159–164.

[95] S. J. Stone, M. A. Temple, and R. O. Baldwin, “Detecting Anomalous

Programmable Logic Controller Behavior using RF-based Hilbert Trans-

form Features and a Correlation-based Verification Process,” Interna-

tional Journal of Critical Infrastructure Protection, vol. 9, pp. 41–51,

2015.

[96] A. Nazari, N. Sehatbakhsh, M. Alam, A. Zajic, and M. Prvulovic, “ED-

DIE: EM-based Detection of Deviations in Program Execution,” in 2017

ACM/IEEE 44th Annual International Symposium on Computer Archi-

tecture (ISCA). IEEE, 2017, pp. 333–346.

147

BIBLIOGRAPHY

[97] C. L. Giles, G. M. Kuhn, and R. J. Williams, “Dynamic Recurrent Neu-

ral Networks: Theory and Applications,” IEEE Transactions on Neural

Networks, vol. 5, no. 2, pp. 153–156, 1994.

[98] X. Wang, Q. Zhou, J. Harer, G. Brown, S. Qiu, Z. Dou, J. Wang, A. Hin-

ton, C. A. Gonzalez, and P. Chin, “Deep Learning-based Classifica-

tion and Anomaly Detection of Side-Channel Signals,” in Cyber Sensing

2018, vol. 10630. International Society for Optics and Photonics, 2018,

p. 1063006.

[99] D. R. Reising, “Exploitation of RF-DNA for Device Classification and Ver-

ification using GRLVQI Processing,” Master’s thesis, Air Force Institute

of Technology, Wright-Patterson Air Force Base, Ohio, 2012.

[100] C. K. Dubendorfer, “Using RF-DNA Fingerprints to Discriminate ZigBee

Devices in an Operational Environment,” Master’s thesis, Air Force Insti-

tute of Technology, Wright-Patterson Air Force Base, Ohio, 2013.

[101] B. Danev, D. Zanetti, and S. Capkun, “On Physical-layer Identification

of Wireless Devices,” ACM Computing Surveys (CSUR), vol. 45, no. 1,

p. 6, 2012.

[102] M. W. Lukacs, A. J. Zeqolari, P. J. Collins, and M. A. Temple, “RF-DNA

Fingerprinting for Antenna Classification,” IEEE Antennas and Wireless

Propagation Letters, vol. 14, pp. 1455–1458, 2015.

[103] R. D. Deppensmith and S. J. Stone, “Optimized Fingerprint Generation

using Unintentional Emission Radio-frequency Distinct Native Attributes

(RF-DNA),” in Aerospace and Electronics Conference, NAECON 2014-

IEEE National. IEEE, 2014, pp. 327–330.

[104] T. J. Bihl, K. W. Bauer, and M. A. Temple, “Feature Selection for RF Fin-

gerprinting with Multiple Discriminant Analysis and using ZigBee Device

Emissions,” IEEE Transactions on Information Forensics and Security,

vol. 11, no. 8, pp. 1862–1874, 2016.

148

BIBLIOGRAPHY

[105] B. Stone and S. Stone, “Comparison of Radio Frequency Based Tech-

niques for Device Discrimination and Operation Identification,” in 11th

International Conference on Cyber Warfare and Security: ICCWS2016.

Academic Conferences and Publishing Limited, 2016, p. 475.

[106] N. Sohaib ul Hassan, “EM Side Channel Analysis on Complex SoC ar-

chitectures,” MSc thesis, Tampere University of Technology, 2016.

[107] D. Genkin, L. Pachmanov, I. Pipman, and E. Tromer, “Stealing Keys

from PCs using a Radio: Cheap Electromagnetic Attacks on Windowed

Exponentiation,” in International Workshop on Cryptographic Hardware

and Embedded Systems (CHES). Springer, 2015, pp. 207–228.

[108] L. Goubin, “A Refined Power-analysis Attack on Elliptic Curve Cryp-

tosystems,” in International Workshop on Public Key Cryptography.

Springer, 2003, pp. 199–211.

[109] D. Genkin, L. Pachmanov, I. Pipman, and E. Tromer, “ECDH Key Extrac-

tion via Low-bandwidth Electromagnetic Attacks on PCs,” in Cryptogra-

phers’ Track at the RSA Conference. Springer, 2016, pp. 219–235.

[110] D. Genkin, L. Pachmanov, I. Pipman, E. Tromer, and Y. Yarom, “ECDSA

Key Extraction from Mobile Devices via Nonintrusive Physical Side

Channels,” in Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security. ACM, 2016, pp. 1626–1638.

[111] A. Bogdanov, I. Kizhvatov, K. Manzoor, E. Tischhauser, and M. Wit-

teman, “Fast and Memory-efficient Key Recovery in Side-Channel At-

tacks,” in International Conference on Selected Areas in Cryptography.

Springer, 2015, pp. 310–327.

[112] J.-J. Quisquater and D. Samyde, “Electromagnetic Analysis (EMA):

Measures and Counter-measures for Smart Cards,” Smart Card Pro-

gramming and Security, pp. 200–210, 2001.

149

BIBLIOGRAPHY

[113] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic Analysis: Con-

crete Results,” in International Workshop on Cryptographic Hardware

and Embedded Systems (CHES). Springer, 2001, pp. 251–261.

[114] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Investigations of

Power Analysis Attacks on Smartcards.” Smartcard, vol. 99, pp. 151–

161, 1999.

[115] M. F. Witteman, J. G. van Woudenberg, and F. Menarini, “Defeating RSA

Multiply-Always and Message Blinding Countermeasures,” in Cryptog-

raphers’ Track at the RSA Conference (CT-RSA), vol. 6558. Springer,

2011, pp. 77–88.

[116] E. Sanfelix, C. Mune, and J. de Haas, “Unboxing the White-box Practi-

cal Attacks Against Obfuscated Ciphers,” Black Hat Europe, vol. 2015,

2015.

[117] G. Camurati, A. Francillon, and F.-X. Standaert, “Understanding

Screaming Channels: From a Detailed Analysis to Improved Attacks,”

IACR Transactions on Cryptographic Hardware and Embedded Sys-

tems, pp. 358–401, 2020.

[118] U. Calari and M. C. Lampkin, “RFID reader,” Apr. 15 1997, US Patent

5,621,199.

[119] M. Hutter, S. Mangard, and M. Feldhofer, “Power and EM Attacks on

Passive 13.56 MHz RFID Devices,” in International Workshop on Cryp-

tographic Hardware and Embedded Systems (CHES), vol. 7. Springer,

2007, pp. 320–333.

[120] T. Kasper, D. Oswald, and C. Paar, “EM Side-Channel Attacks on Com-

mercial Contactless Smartcards using Low-cost Equipment,” Informa-

tion Security Applications, pp. 79–93, 2009.

[121] T. Souvignet and J. Frinken, “Differential Power Analysis as a Digital

Forensic Tool,” Forensic Science International, vol. 230, no. 1-3, pp.

127–136, 2013.

150

BIBLIOGRAPHY

[122] R. Xu, L. Zhu, A. Wang, X. Du, K.-K. R. Choo, G. Zhang, and K. Gai,

“Side-Channel Attack on a Protected RFID Card,” IEEE Access, pp. 1–1,

2018.

[123] C. Kim, M. Schläffer, and S. Moon, “Differential Side Channel Analysis

Attacks on FPGA Implementations of ARIA,” ETRI journal, vol. 30, no. 2,

pp. 315–325, 2008.

[124] S. Chari, J. R. Rao, and P. Rohatgi, “Template Attacks,” in Interna-

tional Workshop on Cryptographic Hardware and Embedded Systems

(CHES). Springer, 2002, pp. 13–28.

[125] H. Saputra, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, R. Brooks,

S. Kim, and W. Zhang, “Masking the Energy Behavior of DES Encryp-

tion,” in Proceedings of the conference on Design, Automation and Test

in Europe-Volume 1. IEEE Computer Society, 2003, p. 10084.

[126] T. Kim, S. Lee, D. Choi, and H. Yoon, “Protecting Secret Keys in Net-

worked Devices with Table Encoding against Power Analysis Attacks,”

Journal of High Speed Networks, vol. 22, no. 4, pp. 293–307, 2016.

[127] M. Witteman and M. Oostdijk, “Secure Application Programming in the

Presence of Side Channel Attacks,” in RSA Conference, vol. 2008,

2008.

[128] Y. Ishai, A. Sahai, and D. Wagner, “Private Circuits: Securing Hard-

ware against Probing Attacks,” in Annual International Cryptology Con-

ference. Springer, 2003, pp. 463–481.

[129] F.-X. Standaert, T. Malkin, and M. Yung, “A Unified Framework for

the Analysis of Side-Channel Key Recovery Attacks,” in Eurocrypt, vol.

5479. Springer, 2009, pp. 443–461.

[130] N. Golmie, O. Rebala, and N. Chevrollier, “Bluetooth Adaptive Fre-

quency Hopping and Scheduling,” in Military Communications Confer-

ence (MILCOM’03), vol. 2. IEEE, 2003, pp. 1138–1142.

151

BIBLIOGRAPHY

[131] V. Iyer, F. Hermans, and T. Voigt, “Detecting and Avoiding Multiple

Sources of Interference in the 2.4 GHz Spectrum,” in 12th European

Conference on Wireless Sensor Networks (EWSN). Springer, 2015,

pp. 35–51.

[132] M. R. Barron, “Creating Consumer Confidence or Confusion? The

Role of Product Certification in the Market Today,” Marquette Intellec-

tual Property Law Review, vol. 11, no. 2, p. 413, 2007.

[133] Y.-i. Hayashi, “State-of-the-art Research on Electromagnetic Information

Security,” Radio Science, vol. 51, no. 7, pp. 1213–1219, 2016.

[134] “ISO/IEC 17825:2016 Testing Methods for the Mitigation of Non-invasive

Attack Classes against Cryptographic Modules,” iso.org, Accessed:

2018-01-21. [Online]. Available: https://www.iso.org/obp/ui/#iso:std:

iso-iec:17825:ed-1:v1:en

[135] “ISO/IEC TS 30104:2015 Physical Security Attacks, Mitigation

Techniques and Security Requirements,” iso.org, Accessed: 2018-01-

21. [Online]. Available: https://www.iso.org/standard/56890.html

[136] G. Becker, J. Cooper, E. DeMulder, G. Goodwill, J. Jaffe, G. Kenworthy,

T. Kouzminov, A. Leiserson, M. Marson, P. Rohatgi et al., “Test Vector

Leakage Assessment (TVLA) Methodology in Practice,” in International

Cryptographic Module Conference, vol. 1001, 2013, p. 13.

[137] M. Marinov, “TempestSDR Remote Video Eavesdropping using

a Software-defined Radio Platform,” github.com, 2018, Accessed:

2018-02-01. [Online]. Available: https://github.com/martinmarinov/

TempestSDR

[138] “ChipWhisperer Embedded Hardware Security Toolchain,” newae.com,

2019, Accessed: 2020-07-29. [Online]. Available: https://www.newae.

com/chipwhisperer

[139] C. O’Flynn and Z. D. Chen, “ChipWhisperer: An Open-Source Platform

for Hardware Embedded Security Research,” in International Workshop

152

https://www.iso.org/obp/ui/#iso:std:iso-iec:17825:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:17825:ed-1:v1:en
https://www.iso.org/standard/56890.html
https://github.com/martinmarinov/TempestSDR
https://github.com/martinmarinov/TempestSDR
https://www.newae.com/chipwhisperer
https://www.newae.com/chipwhisperer

BIBLIOGRAPHY

on Constructive Side-Channel Analysis and Secure Design. Springer,

2014, pp. 243–260.

[140] Riscure, “Inspector SCA: Side-Channel Analysis Tool for Embedded

Systems,” riscure.com, 2019, Accessed: 2019-10-01. [Online].

Available: https://www.riscure.com/security-tools/inspector-sca/

[141] C. Ramsay and J. Lohuis, “White Paper: TEMPEST Attacks against

AES: Covertly Stealing Keys for 200 Euros,” Fox-IT, Netherlands,

Tech. Rep., 2017. [Online]. Available: https://resources.fox-it.com/rs/

170-CAK-271/images/Tempest_attacks_against_AES.pdf

[142] A. B. Blanco, J. de Fuentes, L. G. Manzano, L. H. Encinas, A. M.

Munoz, J. R. Oliva, and I. S. Garcıa, “A Framework for Acquiring and

Analyzing Traces from Cryptographic Devices,” in 13th EAI International

Conference on Security and Privacy in Communication Networks (Se-

cureComm), 2017.

[143] S. Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith, “Rethinking SSL

Development in an Appified World,” in Proceedings of the 2013 ACM

SIGSAC Conference on Computer & Communications Security. ACM,

2013, pp. 49–60.

[144] J. Zdziarski, iPhone Forensics: Recovering Evidence, Personal Data,

and Corporate Assets. O’Reilly Media, Inc., 2008.

[145] A. Hoog, Android Forensics: Investigation, Analysis and Mobile Security

for Google Android. Elsevier, 2011.

[146] B. Hay, M. Bishop, and K. Nance, “Live Analysis: Progress and Chal-

lenges,” IEEE Security & Privacy, vol. 7, no. 2, 2009.

[147] C. J. Yang and A. P. Sample, “EM-Comm: Touch-based Communication

via Modulated Electromagnetic Emissions,” Proceedings of the ACM on

Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 1, no. 3,

p. 118, 2017.

153

https://www.riscure.com/security-tools/inspector-sca/
https://resources.fox-it.com/rs/170-CAK-271/images/Tempest_attacks_against_AES.pdf
https://resources.fox-it.com/rs/170-CAK-271/images/Tempest_attacks_against_AES.pdf

BIBLIOGRAPHY

[148] M. Guri, A. Kachlon, O. Hasson, G. Kedma, Y. Mirsky, and Y. Elovici,

“GSMem: Data Exfiltration from Air-Gapped Computers over GSM Fre-

quencies,” in USENIX Security Symposium, 2015, pp. 849–864.

[149] A. Cheddad, J. Condell, K. Curran, and P. Mc Kevitt, “Digital Image

Steganography: Survey and Analysis of Current Methods,” Signal Pro-

cessing, vol. 90, no. 3, pp. 727–752, 2010.

[150] V. Bhaskaran and K. Konstantinides, Image and Video Compression

Standards: Algorithms and Architectures. Springer Science & Business

Media, 1997, vol. 408.

[151] D. Lillis, F. Breitinger, and M. Scanlon, “Hierarchical Bloom Filter Trees

for Approximate Matching,” Journal of Digital Forensics, Security and

Law, vol. 13, no. 1, 01 2018.

[152] V. Corey, C. Peterman, S. Shearin, M. S. Greenberg, and J. Van Bokke-

len, “Network Forensics Analysis,” IEEE Internet Computing, vol. 6,

no. 6, pp. 60–66, 2002.

[153] S. K. Goudos, I. T. Rekanos, and J. N. Sahalos, “EMI Reduction and ICs

Optimal Arrangement Inside High-Speed Networking Equipment Using

Particle Swarm Optimization,” IEEE Transactions on Electromagnetic

Compatibility, vol. 50, no. 3, pp. 586–596, 2008.

[154] M. Schulz, P. Klapper, M. Hollick, E. Tews, and S. Katzenbeisser, “Trust

the Wire, They Always Told Me!: On Practical Non-destructive Wire-tap

Attacks Against Ethernet,” in Proceedings of the 9th ACM Conference

on Security & Privacy in Wireless and Mobile Networks. ACM, 2016,

pp. 43–48.

[155] W. Entriken, “System Bus Radio,” github.com, Accessed: 2018-01-26.

[Online]. Available: https://github.com/fulldecent/system-bus-radio

[156] W. Liu, K. Huang, X. Zhou, and S. Durrani, “Full-Duplex Backscatter In-

terference Networks Based on Time-Hopping Spread Spectrum,” IEEE

154

https://github.com/fulldecent/system-bus-radio

BIBLIOGRAPHY

Transactions on Wireless Communications, vol. 16, no. 7, pp. 4361–

4377, July 2017.

[157] V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, and J. R. Smith,

“Ambient Backscatter: Wireless Communication out of Thin Air,” ACM

SIGCOMM Computer Communication Review, vol. 43, no. 4, pp. 39–50,

2013.

[158] B. Kellogg, A. Parks, S. Gollakota, J. R. Smith, and D. Wetherall, “Wi-

Fi Backscatter: Internet Connectivity for RF-powered Devices,” in ACM

SIGCOMM Computer Communication Review, vol. 44, no. 4. ACM,

2014, pp. 607–618.

[159] D. Bharadia, K. R. Joshi, M. Kotaru, and S. Katti, “BackFi: High Through-

put WiFi Backscatter,” ACM SIGCOMM Computer Communication Re-

view, vol. 45, no. 4, pp. 283–296, 2015.

[160] P. Zhang, D. Bharadia, K. Joshi, and S. Katti, “Hitchhike: Practical

Backscatter using Commodity WiFi,” in Proceedings of the 14th ACM

Conference on Embedded Network Sensor Systems. ACM, 2016, pp.

259–271.

[161] J. Z. Kolter and M. A. Maloof, “Learning to Detect Malicious Executa-

bles in the Wild,” in Proceedings of the 10th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. ACM, 2004,

pp. 470–478.

[162] P. Saboia, T. Carvalho, and A. Rocha, “Eye Specular Highlights Telltales

for Digital Forensics: A Machine Learning Approach,” in 18th IEEE In-

ternational Conference on Image Processing (ICIP). IEEE, 2011, pp.

1937–1940.

[163] S. Mukkamala and A. H. Sung, “Identifying Significant Features for Net-

work Forensic Analysis using Artificial Intelligent Techniques,” Interna-

tional Journal of Digital Evidence, vol. 1, no. 4, pp. 1–17, 2003.

155

BIBLIOGRAPHY

[164] L. Lerman, G. Bontempi, and O. Markowitch, “Side Channel Attack: An

Approach Based on Machine Learning,” in Proceedings of 2nd Interna-

tional Workshop on Constructive Side-Channel Analysis and Security

Design (COSADE). Schindler and Huss, 2011, pp. 29–41.

[165] H. Maghrebi, T. Portigliatti, and E. Prouff, “Breaking Cryptographic Im-

plementations using Deep Learning Techniques,” in International Con-

ference on Security, Privacy, and Applied Cryptography Engineering.

Springer, 2016, pp. 3–26.

[166] J. Williams, “ACPO Good Practice Guide for Digital Evidence,” Associa-

tion of Chief Police Officers, United Kingdom, Tech. Rep., 2012. [Online].

Available: https://www.digital-detective.net/digital-forensics-documents/

ACPO_Good_Practice_Guide_for_Digital_Evidence_v5.pdf

[167] Á. MacDermott, S. Lea, F. Iqbal, I. Idowu, and B. Shah, “Forensic Anal-

ysis of Wearable Devices: Fitbit, Garmin and HETP Watches,” in 2019

10th IFIP International Conference on New Technologies, Mobility and

Security (NTMS). IEEE, 2019, pp. 1–6.

[168] M. O. Ojo, S. Giordano, G. Procissi, and I. N. Seitanidis, “A Review of

Low-end, Middle-end, and High-end IoT Devices,” IEEE Access, vol. 6,

pp. 70 528–70 554, 2018.

[169] “Raspberry Pi 3 Model B+,” raspberrypi.org, 2020, Accessed:

2020-07-11. [Online]. Available: https://www.raspberrypi.org/products/

raspberry-pi-3-model-b-plus/

[170] “Arduino Leonardo,” arduino.cc, 2020, Accessed: 2020-07-11. [Online].

Available: https://www.arduino.cc/en/Main/Arduino_BoardLeonardo

[171] “Raspberry Pi OS,” raspberrypi.org, 2020, Accessed: 2020-07-11. [On-

line]. Available: https://www.raspberrypi.org/downloads/raspberry-pi-os/

[172] C. Meffert, D. Clark, I. Baggili, and F. Breitinger, “Forensic State Ac-

quisition from Internet of Things (FSAIoT): A General Framework and

156

https://www.digital-detective.net/digital-forensics-documents/ACPO_Good_Practice_Guide_for_Digital_Evidence_v5.pdf
https://www.digital-detective.net/digital-forensics-documents/ACPO_Good_Practice_Guide_for_Digital_Evidence_v5.pdf
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.arduino.cc/en/Main/Arduino_BoardLeonardo
https://www.raspberrypi.org/downloads/raspberry-pi-os/

BIBLIOGRAPHY

Practical Approach for IoT Forensics through IoT Device State Acquisi-

tion,” in Proceedings of the 12th International Conference on Availability,

Reliability and Security. ACM, 2017, p. 56.

[173] E. Ronen, A. Shamir, A.-O. Weingarten, and C. O’Flynn, “IoT Goes Nu-

clear: Creating a ZigBee Chain Reaction,” in 2017 IEEE Symposium on

Security and Privacy (SP). IEEE, 2017, pp. 195–212.

[174] E. Ronen and A. Shamir, “Extended Functionality Attacks on IoT De-

vices: The Case of Smart Lights,” in 2016 IEEE European Symposium

on Security and Privacy (EuroS&P). IEEE, 2016, pp. 3–12.

[175] B. Cheng and D. M. Titterington, “Neural Networks: A Review from a

Statistical Perspective,” Statistical Science, pp. 2–30, 1994.

[176] S. Hochreiter and J. Schmidhuber, “Long Short-term Memory,” Neural

Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[177] F. A. Gers, D. Eck, and J. Schmidhuber, “Applying LSTM to Time Series

Predictable through Time-window Approaches,” in Neural Nets WIRN

Vietri-01. Springer, 2002, pp. 193–200.

[178] A. Ben-Hur and J. Weston, “A User’s Guide to Support Vector Ma-

chines,” in Data mining techniques for the life sciences. Springer, 2010,

pp. 223–239.

[179] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,

J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis

et al., “Understanding the Mirai Botnet,” in USENIX Security Sympo-

sium, 2017, pp. 1092–1110.

[180] “Novelty and Outlier Detection,” scikit-learn.org, 2020, Accessed:

2020-08-20. [Online]. Available: https://scikit-learn.org/stable/modules/

outlier_detection.html

[181] “TCP Protocol - Ubuntu Manual Pages,” ubuntu.com, Accessed: 2020-

10-14. [Online]. Available: http://manpages.ubuntu.com/manpages/

cosmic/man7/tcp.7.html

157

https://scikit-learn.org/stable/modules/outlier_detection.html
https://scikit-learn.org/stable/modules/outlier_detection.html
http://manpages.ubuntu.com/manpages/cosmic/man7/tcp.7.html
http://manpages.ubuntu.com/manpages/cosmic/man7/tcp.7.html

BIBLIOGRAPHY

[182] A. Liaw, M. Wiener et al., “Classification and Regression by Random

Forest,” R News, vol. 2, no. 3, pp. 18–22, 2002.

[183] E. I. Altman et al., “Predicting Financial Distress of Companies: Revisit-

ing the Z-score and ZETA Models,” Stern School of Business, New York

University, pp. 9–12, 2000.

[184] I. T. Jolliffe and J. Cadima, “Principal Component Analysis: A Review

and Recent Developments,” Philosophical Transactions of the Royal So-

ciety A: Mathematical, Physical and Engineering Sciences, vol. 374, no.

2065, p. 20150202, 2016.

[185] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene Selection for Can-

cer Classification using Support Vector Machines,” Machine Learning,

vol. 46, no. 1-3, pp. 389–422, 2002.

[186] N. I. Sapankevych and R. Sankar, “Time Series Prediction using Sup-

port Vector Machines: A Survey,” IEEE Computational Intelligence Mag-

azine, vol. 4, no. 2, pp. 24–38, 2009.

[187] H. Ponce, L. Miralles-Pechuán, and M. Martínez-Villaseñor, “A Flexible

Approach for Human Activity Recognition using Artificial Hydrocarbon

Networks,” Sensors, vol. 16, no. 11, p. 1715, 2016.

[188] E. Casey, “Standardization of Forming and Expressing Preliminary Eval-

uative Opinions on Digital Evidence,” Forensic Science International:

Digital Investigation, p. 200888, 2020.

[189] “Cyber-investigation Analysis Standard Expression (CASE),” caseon-

tology.org, 2020, Accessed: 2020-07-29. [Online]. Available:

https://caseontology.org/

[190] M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson, “An

Overview of the HDF5 Technology Suite and its Applications,” in Pro-

ceedings of the EDBT/ICDT 2011 Workshop on Array Databases.

ACM, 2011, pp. 36–47.

158

https://caseontology.org/

BIBLIOGRAPHY

[191] T. Cooklev, R. Normoyle, and D. Clendenen, “The VITA-49 Analog RF-

digital Interface,” IEEE Circuits and Systems Magazine, vol. 12, no. 4,

pp. 21–32, 2012.

[192] B. Hilburn, N. West, T. O’Shea, and T. Roy, “SigMF: The Signal Metadata

Format,” in Proceedings of the GNU Radio Conference, vol. 3, no. 1,

2018.

[193] M. Cohen, S. Garfinkel, and B. Schatz, “Extending the Advanced

Forensic Format to Accommodate Multiple Data Sources, Logical Ev-

idence, Arbitrary Information and Forensic Workflow,” Digital Investiga-

tion, vol. 6, pp. S57–S68, 2009.

159

Appendix A

List of Abbreviations

Acronyms

ADC Analog-to-Digital Conversion.

AES Advanced Encryption Standard.

AI Artificial Intelligence.

AM Amplitude Modulation.

API Application Programming Interface.

BLE Bluetooth Low Energy.

CASE Cyber-investigation Analysis Standard Expression.

CCTV Closed-circuit Television.

CEMA Correlation Electromagnetic Analysis.

CPA Correlation Power Analysis.

CPU Central Processing Unit.

160

Acronyms

CRT Cathode-ray Tube.

DEMA Differential Electromagnetic Analysis.

DES Data Encryption Standard.

DoS Denial of Service.

DPA Differential Power Analaysis.

DRM Digital Rights Management.

DSP Digital Signal Processing.

DUT Device under Test.

ECC Elliptic Curve-based Cryptography.

ECDH Elliptic Curve-based Diffie Hellman.

ECDSA Elliptic Curve-based Digital Signature Algorithm.

EM Electromagnetic.

EM-SCA Electromagnetic Side-Channel Analysis.

EMC Electromagnetic Compatibility.

EU European Union.

FASE Finding Amplitude-modulated Side-channel Emanations.

FCC Federal Communications Commission.

FDA Food and Drug Administration.

FFT Fast Fourier Transform.

FPGA Field-programmable Gate Arrays.

GPIO General Purpose Input/Output.

161

Acronyms

GRC GNU Radio Companion.

GSM Global System for Mobile Communications.

GUI Graphical User Interface.

I/O Input/Output.

I/Q In-phase/Quadrature-phase.

IC Integrated Circuit.

IEC International Electrotechnical Commission.

IoT Internet of Things.

IP Internet Protocol.

LED Light-emitting Diode.

LSTM Long Short-term Memory.

MAC Medium Access Control.

MCU Microcontroller Unit.

MDL Multiple Discriminant Analysis.

ML Machine Learning.

ML Maximum Likelihood.

MLP Multi-layer Perceptron.

OTA Over-the-Air.

PCA Principal Component Analysis.

PCB Printed Circuit Board.

PLC Programmable Logic Controllers.

162

Acronyms

PSD Power Spectral Density.

RADAR Radio Azimuth Direction and Ranging.

RAM Random Access Memory.

RF Random Forests.

RF Radio Frequency.

RF-DNA Radio Frequency Distinct Native Attributes.

RFE Recursive Feature Elimination.

RFID Radio Frequency Identification.

RNN Recurrent Neural Networks.

ROC Receiver Operating Characteristic.

RSA Rivest-Shamir-Adleman.

SAVAT Signal AVailability for an ATtacker.

SD Secure Digital.

SDR Software-defined Radio.

SEM Scanning Electron Microscopes.

SEMA Simple Electromagnetic Analysis.

SMA SubMiniature version A.

SMS Short Message Service.

SNR Signal-to-Noise Ratio.

SoC System-on-Chip.

SPA Simple Power Analysis.

163

Acronyms

SSH Secure Shell.

SSL Secure Socket Layer.

STFT Short-term Fourier Transform.

SVM support vector machines.

TCP Transmission Control Protocol.

TTL Time-to-Live.

TV Television.

TVLA Test Vector Leakage Assessment.

UART Universal Asynchronous Receiver/Transmitter.

UDP User Datagram Protocol.

USB Universal Serial Bus.

USRP Universal Software Radio Peripheral.

VLSI Very Large-scale Integration.

VM Virtual Machines.

WBC White Box Cryptography.

XSS Cross-site Scripting.

164

Appendix B

EMvidence User Documentation

About

EMvidence is a tool that can be used to gather insights from electromagnetic

(EM) side-channel radiation of IoT devices. Users can capture EM traces of

a device-under-test (DUT) through EMvidence using a software defined radio

(SDR) hardware. Additionally, users can upload EM traces that are captured

through other means into EMvidence as well. An EM trace can be analysed

to gather insights of the DUT by enabling various EMvidence plug-ins. Some

EMvidence plug-ins are provided by the developer while users have the free-

dom to build third-party plug-ins according to their needs.

Installation

System Requirements:

• The computer must have at least 8 GB of RAM and sufficient disk space

in order to store and process EM traces.

• The Ubuntu operating system is most preferred and the instructions as-

sume so. If you are using something else, please check how to install

the required packages on your preferred system.

165

Figure B.1: Login window of the EMvidence framework.

• An Internet connection to download and install required packages.

Installing Required Packages:

• Install Miniconda for Python 3.7, which is required to install other impor-

tant packages.

• Now, open a terminal and run the following commands to install required

packages through conda.

conda install -c ryanvolz gnuradio

conda install -c conda-forge weasyprint

Downloading and Running:

Run the following commands on a terminal.

git clone https://github.com/asanka-code/EMvidence.git

cd EMvidence/EMvidence/

./start.sh

Now, open a web browser and goto the URL http://0.0.0.0:5000.

You can login by using emvidence as the username and password (see Fig-

ure B.1).

166

http://0.0.0.0:5000

Usage of EMvidence

Dashboard

Figure B.2: Dashboard interface of the EMvidence framework.

Once logged in, the user is sent to the dashboard of the EMvidence GUI in-

terface (see Figure B.2). The user can navigate between different options such

as uploading separately acquired EM data, capturing new EM data, analysing

EM data and also adjusting the default settings of the system through the menu

bar. In future versions of EMvidence, the dashboard interface will be improved

to provide a summary of the currently stored investigative EM data, important

167

system settings and also the details of SDR hardware currently connected to

the system.

Uploading Data

Figure B.3: The interface for uploading EM data into EMvidence framework.

If there exists any EM data previously acquired from a different software

and/or hardware setup, the EMvidence framework provides the facility to up-

load such data into the EMvidence for analysis. This can be done by clicking

on the Upload data menu and going to the data uploading window (see Fig-

ure B.3).

In order to upload an EM data file to EMvidence, the data should be in I/Q

format stored with the file extension .cfile. Once the upload is complete,

EMvidence automatically convert the data into .npy format for easier and effi-

cient processing. When uploading EM data, multiple parameters related to the

data must be selected in the menu so that the data can be properly interpreted

later. These parameters are namely, the SDR device used to capture the data,

centre frequency of data, and sample rate. Furthermore, a hash function, e.g.,

168

MD5, SHA1, SHA256, should be selected to calculate and store a hash value

along with the EM data file.

Capturing Data

Figure B.4: The interface for capturing EM data using the EMvidence framework.

Capturing EM data from IoT devices can be performed on EMvidence by

going through the Capture data interface (see Figure B.4). First of all, a suit-

able SDR hardware should be connected to the computer where the EMvi-

dence framework is running. EMvidence currently supports HackRF and RTL-

SDR devices, and will support many more devices in the future. When the

SDR device is ready and its antenna is placed closer to the IoT device being

investigated, the user can adjust the data capture settings in the EMvidence

interface. These capture settings include the SDR device, centre frequency,

sample rate, sample duration, hash function, and a file name to store the data.

Analysing Data

Finally EM data can be analysed on EMvidence by using a wide variety of

plug-ins. In the Analyse data window, EMvidence provides the facility to select

169

Figure B.5: The interface for analysing EM data using plug-ins on the EMvidence
framework.

a dataset acquired by or uploaded to the system previously (see Figure B.5).

Depending on the specific IoT device being analysed, the user can select one

or more plug-ins for the analysis from this window. After selecting the plug-ins,

Start analysis button should be clicked to start the analysis. Once the analysis

is compete, the report can be opened as a PDF file, which contains the details

of the EM dataset and the output of each plug-in.

Settings

The settings window of EMvidence provides multiple facilities to make adjust-

ments to the whole system (see Figure B.6). Most importantly, whenever a

new plug-in is developed or obtained from a third-party, it can be integrated into

EMvidence by uploading the plug-in as a .zip file from the settings window.

Similarly, adding and removing new IoT device types can be done through the

same settings interface. Finally, whenever an EM dataset needs to be removed

from the system, it can be selected and deleted from this window.

170

Figure B.6: Settings interface of the EMvidence framework.

Plug-in Development

Plug-ins that are shipped by default with EMvidence are located at the

backyard directory1 in the source code directory. In order to assist with re-

search and development of new plug-ins for EMvidence, the skeleton code for

a plug-in is provided in the same directory.

Please refer to the EMvidence framework’s source code repository in

Github2 for the latest updates.

1https://github.com/asanka-code/EMvidence/tree/master/backyard
2https://github.com/asanka-code/EMvidence

171

https://github.com/asanka-code/EMvidence/tree/master/backyard
https://github.com/asanka-code/EMvidence

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Publications
	Introduction
	Motivation
	Research Problem
	Extraction of Forensic Insights through Electromagnetic Side-Channel Analysis
	Efficiency of Electromagnetic Side-Channel Analysis Methods
	Management of the Diversity and Dynamism of Internet of Things Ecosystem

	Thesis Approach
	Designing and Implementing a Methodology as the EMvidence Framework
	Designing and Evaluating Machine Learning-based Methods in the EMvidence Framework
	Designing and Evaluating Methods to Increase the Efficiency of the EMvidence Framework

	Contributions
	Limitations
	Thesis Organisation

	Technical Background
	Internet of Things
	Digital Forensics
	Digital Investigation Process
	Forensics of Internet of Things Devices
	Encrypted Devices

	Digital Signal Processing
	The Nature of a Signal
	Analog and Digital Signals
	Time and Frequency Domains
	The Visualisation of Signals
	Tools and Libraries

	Software-defined Radio
	Software-defined Radio Architecture
	Software-defined Radio Hardware Tools
	Software-defined Radio Software Tools
	The Nature of Software-defined Radio Data

	Electromagnetic Side-Channel Radiation
	Sources of Electromagnetic Side-Channels
	Observation of Electromagnetic Side-Channels
	Leakage of Critical Information

	Machine Learning

	Related Work
	Side-Channel Attacks
	Unintentional Electromagnetic Radiation
	Hardware that Causes Electromagnetic Radiation
	Sampling Electromagnetic Radiation
	The Connection between Instructions and Electromagnetic Radiation

	Electromagnetic Radiation as a Signature
	Electromagnetic Radiation as a Hardware Signature
	Electromagnetic Radiation as a Software Signature

	Electromagnetic Radiation that Leak Information
	Observable Electromagnetic Spectrum Patterns
	Differential Electromagnetic Analysis
	Analysis of Wireless-powered Devices
	Countermeasures to Electromagnetic Side-Channel Analysis

	Standards and Tools
	Current Direction
	Frequent Cryptographic Operations
	Combined Side-Channel Attacks
	File Signatures
	Packet Analysis of Network Devices
	Easy Access to Electromagnetic Spectrum
	Backscatter Channels
	Advancements in Machine Learning

	Methodology: The Birth of EMvidence
	Introduction
	A Case Study Scenario
	A Forensic Model for Internet of Things
	Identification of Requirements
	Planning for Data Acquisition and Analysis
	Building New Analysis Methods
	Acquiring Electromagnetic Data
	Executing Electromagnetic Side-Channel Analysis
	Reporting Results
	Overall Workflow

	The EMvidence Framework
	Data Acquisition Component
	Report Generation Component
	EMvidence Core
	Implementation Details

	Plug-ins for EMvidence
	Plug-in Behaviour
	Plug-in Development

	Procedure for Data Acquisition
	Representative Internet of Things Devices
	Determining Data Acquisition Parameters

	Experimental Plan
	Designing Methods to Acquire Forensic Insights
	Designing Methods to Increase Efficiency

	Insights from Waves: Machine Learning Methods for EMvidence
	Introduction
	Considerations for Experiments
	Types of Useful Insights
	Machine Learning Algorithms
	Preprocessing Procedure

	Experimental Evaluation
	The Cryptographic Activities of High-end Internet of Things Devices
	The Cryptographic Activities of Low-end Internet of Things Devices
	Firmware Version of Internet of Things Devices
	Malicious Modifications to the Firmware of Internet of Things
	Current Behavioural State of an Internet of Things Device

	Discussion

	Curse of Dimensionality: Increasing the Efficiency of EMvidence
	Introduction
	Considerations for Experiments
	Approach 1: Minimising Data Production
	Electromagnetic Data Processing Overhead
	Electromagnetic Data Storage Overhead
	Electromagnetic Data Transmission Overhead

	Approach 2: Selecting Useful Channels
	Procedure of Experiments
	Using 20,000 Channels
	Principal Component Analysis
	Channel Selection Based on the Variance
	Channel Selection based on the Average
	Applying Average per Class and Variance between the Classes
	Applying Recursive Feature Elimination
	Using a Time Window of 50 Timestamps
	Summary of the Channel Selection Methods

	Discussion

	Conclusion & Future Work
	Conclusion
	Implications of This Work
	Future of Digital Forensics
	Legal Acceptability
	Platform for New Research

	Future Work
	Evaluation of Commonly-used Internet of Things
	Interoperability between Evidence Sources
	Management of Electromagnetic Data
	Hardware Independence of Machine Learning Models
	Cryptographic Key Retrieval in Forensic Context

	Bibliography
	Appendices
	List of Abbreviations
	EMvidence User Documentation

