
Declarative Interface for In-network Actuation on

Wireless Sensor-Actuator Networks

Asanka Sayakkara∗, M.D.J.S. Goonetillake† and Kasun De Zoysa‡

∗asanka.code@gmail.com, †jsg@ucsc.cmb.ac.lk, ‡kasun@ucsc.cmb.ac.lk

University of Colombo School of Computing,

No. 35, Reid avenue,

Colombo 7, Sri Lanka.

Abstract—Declarative SQL queries are a way of abstracting
out the underlying complexity in Wireless sensor-actuator net-
works (WSAN). Current SQL syntax to perform actuation tasks
misleads the user because of their artificial way of expressing
the actuation tasks thus violating the purpose of the declarative
nature. Particularly with respect to distributed in-network ac-
tuation tasks where multiple sensor nodes and actuator nodes
are involved, the user may be required to write multiple queries
based on the current actuation query syntax causing a negative
impact on the performance. We address these issues in existing
declarative layer with modifications to the virtual data table of the
abstraction and thus a new syntax is suggested and implemented.

I. INTRODUCTION

Wireless sensor networks(WSN) [10] consists of small wire-

less enable embedded devices called motes in large numbers.

They are used for tasks such as environmental monitoring and

tactical surveillance[13], [15]. Motes are capable of taking

readings from their built-in sensors and transmitting to a

specified location for further processing and analyzing. By

the nature of their applications, motes have to be low cost

and should be able to run on battery power making them

resource constrained in all aspects including memory capacity

and CPU power. While motes are capable of sensing the envi-

ronment, various real world applications raise the requirement

of controlling the environment by performing actions based on

sensor readings. To this end, actuators such as switches and

regulators can be connected to motes to perform actuation

tasks. Such networks are known as wireless sensor-actuator

networks (WSAN)[1].

Due to hardware limitations of motes it is necessary to write

low level application codes carefully managing the memory

and saving battery power as much as possible for a longer

service life. One approach of making the WSN users life easier

is high-level programming abstractions which hide the low

level hardware details. Database abstraction for WSNs [3] like

Cougar [16] and TinyDB [12] are such abstractions where the

whole network is represented as a virtual database table and

each column of the table is mapped to a sensor type available

in the network.

In such implementations, the data of the network is acquired

by running SQL queries over the virtual table. SQL enables

the user to specify which data to be acquired from the virtual

table in a declarative way without bothering how the data is

acquired. However with respect to complex sensing associated

Fig. 1. For example a greenhouse with multiple sensor and actuator nodes.
The actuators include an air cooler, a screen controller and a sprinkler which
are fixed inside the greenhouse while the sensors include a temperature sensor
and a humidity sensor which are placed outside the greenhouse. Only the
nodes relevant to the queries are given for simplicity.

with actuating requirements, current declarative interface for

sensor networks exhibit serious weaknesses making them

unusable for such scenarios. Moreover, there’s no easy or

declarative mechanism to obtain meta level information on

actuators in WSAN which is important for actuator monitoring

purposes. We illustrate a scenario with respect to a greenhouse

cultivation [4] for the purpose of pinpointing the weaknesses

in the current approach.

A. An Actuation Scenario

In a greenhouse environment it is particularly crucial to

manage the environment effectively by controlling the envi-

ronmental parameters such as temperature, light, humidity,

CO2, ambient pressure and wind flow. There are actuators

to control these parameters and these may include screen

controllers/carton sliders to protect the cultivation from direct

sunlight by regulating the amount of sunlight entering to the

greenhouse, heaters and air coolers to maintain humidity and

temperature, fans to maintain the wind flow and also actuators

to inject CO2 to influence photosynthesis.

In order to obtain the real benefit of deploying WSAN in

this context the end user should be able to monitor and thus

to control the environmental parameters (which may subject

to dynamic changes) through controlling relevant actuators

accordingly. By the nature of the application, the network may

have three types of motes which are motes with sensors only,

motes with actuators only and motes with both sensors and

actuators.

Consider as such a scenario where a WSAN deployed for a

greenhouse to monitor the condition of the field continuously

and to perform actions when necessary. Assume that this

network employs a TinyDB [12] like abstraction to monitor

the network since TinyDB provides more facilities for WSAN.

If climate sensors (say motes 5 and 7) fixed outside the

greenhouse sense an outside temperature greater than 35 ◦C

and humidity level greater than 45, the user requires to switch

on an air cooler, a screen controller and a sprinkler attached

to motes 9, 15 and 23 respectively which are fixed inside the

greenhouse. Figure 1 depicts this greenhouse environment.

To check the relevant sensor readings of the relevant nodes,

user has to send Query-1 on TinyDB abstraction layer. If this

query generate results from motes 5 and 7, that means the

sensors of our concern have the suitable values to perform the

actuation. Based on that results, the user has to send actuation

queries as shown in Query-2, 3 and 4 targeting at each node

and their actuators accordingly.

Query-1

SELECT nodeid

FROM sensors

WHERE (nodeid=5 OR nodeid=7)

AND temperature>35 AND humidity>45

ONCE;

Query-2

SELECT nodeid

FROM sensors

WHERE nodeid=9

OUTPUT ACTION air-cooler-on()

ONCE;

Query-3

SELECT nodeid

FROM sensors

WHERE nodeid=15

OUTPUT ACTION screen-ctrl-on()

ONCE;

Query-4

SELECT nodeid

FROM sensors

WHERE nodeid=23

OUTPUT ACTION sprinkler-on()

ONCE;

TinyDB’s query language follows conventional SQL syntax

to acquire data from the virtual database table with some

additions to support exclusive requirements in sensor networks

as explained in detail in the following section.

B. Problem Of Actuation Queries

We identify three main issues in current actuation queries in

the declarative interface. Firstly when performing the actuation

with existing queries, user has to write SELECT queries with

the OUTPUT ACTION clause. Due to this new clause, the

query does not return any data requested by the SELECT

query and instead calls the low level function to perform the

actuation. However when writing or reading SELECT queries,

semantically it represents displaying of data relevant to the

stated columns with respect to a database table. However, these

actuation queries performed by enhanced SELECT queries are

not intended to display or return any data thus confusing the

query writer. This is due to the misuse of ’SELECT nodeid’

when the exact node id is defined in the WHERE clause as

in Query-2, 3 and 4. Therefore the user does not receive the

true advantage of declarative interface when the syntax is in

this type of an artificial way.

Secondly, when multiple sensors and actuators are to be

involved in an actuation task as the given scenario, the user

may have to write number of queries for checking different

sensor conditions before actuating different actuators. This

multiple query usage leads to time delays as human inter-

vention is required to issue each query from a sequence of

queries. Moreover if the user forgets/misses to issue a query

from the corresponding query sequence the expected control

outcome cannot be achieved. As such multiple query usage is

not recommended if time delays between sensing and actuating

is required to be as minimum as possible for time critical tasks.

Additionally multiple queries results in more power usage of

nodes reducing the service life of the network. These issues

become worse when the number of nodes in the network grows

in large numbers.

Finally since the existing data model of declarative interface

does not provide an abstraction over actuators, they have to

be activated by calling low level functions. Therefore existing

data model does not provide any easy mechanism to find the

status of actuators if actuation tasks have to be done based

on the current status of actuators. In this paper we provide

a solution to overcome the issues associated with existing

declarative layer. The rest of this paper is organized as follows.

In Section II, we thoroughly analyze different actuation query

syntax and their weaknesses in available declarative interface

mainly based on TinyDB [12]. The Section III introduces our

solution approach addressing those issues while Section IV

and V evaluate and discuss this approach. Finally we provide

details of related works in Section VI before concluding the

paper.

II. DECLARATIVE QUERIES FOR ACTUATION

This section contains the basic syntax variations of TinyDB

which can be used to perform actuation tasks in different

ways. When performing an actuation using TinyDB query

language, we mainly identify three different approaches based

on it’s syntax definitions. The applicability of each of these

approaches depends on the nature of actuation scenario we

face. In this section we look into these three approaches to

highlight their strengths and weaknesses in different actuation

requirements.

A. Approach - 1

The simplest way of performing an actuation using TinyDB

abstraction is a SELECT query with OUTPUT ACTION key-

word which calls a low level function as the example query

shown below.

Query-5

SELECT nodeid

FROM sensors

WHERE nodeid=9 AND temperature > 25

OUTPUT ACTION air-cooler-on()

SAMPLE PERIOD 1s FOR 10s;

Immediately after each node in the network receives this

query it is being executed. The important fact to keep in

mind regarding the above query type is that the sensor and

the actuator which gets called by the function (here it is air-

cooler-on()) should reside in the same node. This is because

when a node execute a query it has access only to sensors and

actuators which are connected to that particular node. Because

of that reason this type of queries can refer to sensors and

actuators residing in the same node. Additionally in this syntax

only one function can be called with the OUTPUT ACTION

clause making it unable to control multiple actuators in a node

by a single query.

The SAMPLE PERIOD keyword is used in TinyDB to

specify the sampling rate of data. When executing the above

query at node 9, temperature sensor readings are taken at each

second starting from the time the query received for a period

of 10 seconds. If any of those readings were greater than 25,

then the air-cooler-on() function gets called.

B. Approach - 2

In this approach we describe queries that get executed only

if a particular event is occurred in the environment where the

nodes are deployed. The following query is an example where

the enclosed SELECT query gets executed only if the event

named as light-high() is detected by the node.

Query-6

ON EVENT light-high():

SELECT nodeid

FROM sensors

WHERE nodeid=9

OUTPUT ACTION screen-ctrl-on()

ONCE;

These event does not have to be always triggered by

hardware components of the node. Another declarative query

like the one shown below which received to the node can

signal an event causing the previous query to get executed. The

SIGNAL clause takes the event name as a parameter which is

triggered when this query is executed on the same node where

the previous query is stored.

Query-7

SELECT nodeid

FROM sensors

WHERE nodeid=9 AND light > 40

OUTPUT ACTION SIGNAL light-high()

ONCE;

These event based queries can be used to set scheduled ac-

tuations which are performed according to the events occurred

in the environment.

C. Approach - 3

Another way of performing an in-network actuation in

TinyDB interface is the nested SELECT queries. This nesting

is done using the OUTPUT ACTION clause as shown in

Query-8. When this query is received to a node in the network,

it immediately start executing the query. If the predicate in the

first WHERE clause evaluates to true, then this node perform

the action specified with the OUTPUT ACTION clause which

is a nested SELECT query. This nested SELECT query is

broadcasted to the network as a new query which will perform

an actuation on the same or another node in the network.

Distributed in-network actuation tasks can be performed by

using such nested queries in TinyDB since the sensors and

actuators do not have to be residing in the same node. Usage

of nested SELECT queries still suffer from the weaknesses we

have explained previously like the inability to control multiple

actuators of a same node from a single query.

Query-8

SELECT nodeid

FROM sensors

WHERE nodeid=9 AND light > 40

OUTPUT ACTION

(

SELECT nodeid

FROM sensors

WHERE nodeid=9

OUTPUT ACTION screen-ctrl-on()

ONCE

)

SAMPLE PERIOD 10s;

While being used to acquire data from the sensor network,

TinyDB’s SELECT query has been used to perform actua-

tion tasks too. It is evident that all the declarative database

abstraction layers including TinyDB (designed for wireless

sensor networks) have not given enough functionality to

perform actuation tasks. This will affect the wireless sensor-

actuator networks for which actuation tasks play a major

role. Therefore providing the support to perform complex

actuation scenarios while preserving the declarative nature

of SQL queries in the database abstraction is an important

requirement in wireless sensor-actuator networks.

III. OUR APPROACH

In our attempt to solve the identified issues in declarative

interface, we begin with the current data model (Table I) and

build a better syntax support for actuation queries. In this

process we consider requirements of distributed in-network

actuation scenarios in order to come up with a solution that

could be applicable in all such cases.

TABLE I
TRADITIONAL SENSOR TABLE

nodeid temperature humidity

1 25 40

2 28 39

3 27 NULL

4 NULL 41

TABLE II
ENHANCED TABLE WITH ACTUATORS INTEGRATED

nodeid temperature humidity air cooler sprinkler

1 25 40 NULL NULL

2 28 39 off off

3 27 NULL on NULL

4 NULL 41 off on

A. Virtual Data Table

Table I shows an example virtual table of a database

abstraction over a wireless sensor-actuator network. According

to the table, there are four nodes in the network and each node

has two sensor types, temperature and humidity. The values of

those sensors shown in the table are acquired in a particular

instance of time by a SELECT query. If a node in the network

does not have a particular sensor type the corresponding cell

in the table will contain a NULL value.

Now consider each node in the network is equipped with

two actuator types namely an air cooler and a sprinkler which

are controlled electronically. Since the actuators in the network

are not represented in the table, still the virtual table will look

like Table I while the user have to control actuators using low

level function calls in OUTPUT ACTION clause of SELECT

query. Moreover, there’s no way for the user to find the current

status of each actuator in the network.

To overcome the problems associated with the current

mechanism and thus to provide the benefits of declarative

interface on in-network actuation we understand the impor-

tance of enhancing the virtual table of the database abstraction

with actuator types. As such the status of each actuator type

in the network is represented as an attribute in the virtual

table in addition to sensor types as shown in Table II. Most

significantly this enables user to access actuators in each node

just as the way sensors are accessed. Consequently when the

user wants to know the current status of a particular actuator

or a set of actuators in the network, simply SELECT queries

as given below will do the job.

Query-9

SELECT nodeid, air_cooler, sprinkler

FROM sensors

ONCE;

Query-10

SELECT nodeid

FROM sensors

WHERE air_cooler=’on’

ONCE;

Query-11

SELECT count(*)

FROM sensors

WHERE sprinkler<>NULL

ONCE;

B. Actuation Using Updates

Since sensor attribute values in the virtual table represent

real time acquired data of the sensors, they can not be altered

by the user. However actuator attribute values in the virtual

table are alterable and this enables the actuator status to be

changed according to the user requirements. This situation

opens the door to control actuators in the network by applying

updates on the virtual table using conventional UPDATE query

syntax without using low level function calls as explained

previously. However since these queries are executed over a

WSAN, it is necessary to have the syntax support to specify

the sampling rate of sensor /actuator attributes just as in the

existing approach.

For instance if the user wants to turn the air cooler in node

2 to ’on’ state only if the temperature reading of that node is

greater than 20, a query like the one shown in Query-12 can

be used.

Query-12

UPDATE sensors

SET air_cooler=’on’

WHERE nodeid=2 AND temperature>20

ONCE;

When this query is sent to all the nodes in the network, each

node will evaluate the predicates in WHERE clause. If a node

reveals that those predicates are true on it, it can turn the air

cooler actuator connected to it to ’on’ state. This illustrates a

local in-network actuation scenario.

C. Distributed In-network Actuation

When we need to perform in-network actuation tasks where

multiple sensor nodes and actuator nodes are involved in a

single actuation, simple queries like the Query-12 can not be

used. For instance consider the requirement that we need to

turn the air cooler to ’on’ state in both nodes 2 and 4 only

if node 1 is having a temperature reading greater than 20.

We consider the join of multiple table aliases can be used to

address this requirement with the actuation criteria specified in

WHERE clause of the UPDATE query as given in Query-13.

Query-13

UPDATE sensors AS sen, sensors AS act

SET act.air_cooler=’on’

WHERE (act.nodeid=4 OR act.nodeid=2) AND

(sen.nodeid=1 AND sen.temperature>20)

ONCE;

Two aliases for the sensors table have been taken as sen and

act. We use the sen alias to specify the criteria of the sensor

nodes while the act alias to specify the criteria of actuator

Fig. 2. Prototype implementation based on TikiriDB[9] on Contiki OS[6].
Commandline client accepts SQL queries, parse it and send to the WSAN
while the sensor-actuator nodes execute the query packets received over the
network.

nodes. This enables distributed in-network actuation tasks with

different complex actuation criteria using a single UPDATE

query unlike the existing actuation mechanism with SELECT

queries. The grammar definition of this UPDATE query syntax

is shown below.

UPDATE <table> [AS <alias>]

{, <table> [AS <alias>]}*

SET [<alias>.]<attribute>=<value>

{, [<alias>.]<attribute>=<value>}*

[

WHERE

[<alias>.]<attribute>{<|>|=|<=|>=}

<value>

{ {AND|OR}

[<alias>.]<attribute>{<|>|=|<=|>=}

<value>

}*

]

[SAMPLE PERIOD <seconds>

[FOR <nrounds>]] | [ONCE]

IV. EXPERIMENTS AND RESULTS

For evaluating the proposed in-network actuation mecha-

nism we mainly considered three aspects. First aspect is the

applicability. There our concern is whether our proposed actu-

ation mechanism is able to cater for any type of actuation re-

quirement that can occur in wireless sensor-actuator networks.

Second aspect is the comparison of the declarative nature of

the proposed syntax in writing queries for complex actuation

tasks. The third aspect is the impact on the performance when

using the proposed mechanism.

A. Applicability

To evaluate the applicability of the new syntax for actuation

we consider mainly three types of actuation scenarios that

can occur in a wireless sensor-actuator network. Those are

hybrid sensor-actuator nodes scenario, a pair of sensor nodes

and actuator nodes scenario and multiple sensor nodes and

actuator nodes scenario. Our goal is to show that each of these

actuation scenarios can be addressed by the suggested syntax.

1) Hybrid sensor-actuator node scenario: In this case both

sensors and actuators of our concern are in the same node of

the network. For instance, consider the node 2 in the virtual

table showed in Table II. We need to turn its air cooler and

sprinkler to ’on’ state if its temperature reading is greater that

25 and humidity value is lower than 45.

We can perform this actuation by using a query like the one

given in Query-14.

Query-14

UPDATE sensors

SET air_cooler=’on’, sprinkler=’on’

WHERE nodeid=2 AND

temperature>25 AND humidity<45

ONCE;

2) A Pair of sensor node and actuator node scenario:

The simplest distributed in-network actuation scenario is the

involvement of two nodes where the required sensors are in

one node and the required actuators are in another node. For

instance we need to switch off the sprinkler of node 4 only

if the node 1 has a temperature value greater than 20. We

perform this actuation task by using the Query-15.

Query-15

UPDATE sensors AS sen, sensors AS act

SET act.sprinkler=’off’

WHERE act.nodeid=4 AND

sen.nodeid=1 AND sen.temperature>20

ONCE;

3) Multiple sensor nodes and actuator nodes scenario: In

this case we consider actuation requirements where multiple

sensor nodes and actuator nodes are involved in an actuation

task. For instance, we need to switch off sprinkler in node 4

and switch on air cooler in node 2 only if all the nodes in the

network which are having temperature sensors report a value

greater than 25. We perform this actuation task as shown in

Query-16.

Query-16

UPDATE sensors AS sen,sensors AS act1,

sensors AS act2

SET act1.sprinkler=’off’,

act2.air_cooler=’on’

WHERE act1.nodeid=4 AND

act2.nodeid=2 AND

sen.temperature>25

ONCE;

B. Declarative Nature

Moreover we evaluated the declarative nature of the sug-

gested syntax over the existing syntax by a user survey. We

randomly selected a group of 10 computer science students

who have an average knowledge on SQL and acquisitional

User
UPDATE query

Client Application

Wireless Sensor-Actuator Network

 (WSAN)

1

3

2

4 5

Fig. 3. Execution of an UPDATE query. (1) User writes an UPDATE query.
(2) Client application accepts the query and parse it. (3) Client application asks
the necessary sensor values and actuator status from the network. (4) Nodes
in the network respond with requested data. (5) Client application internally
process the received data, identify the nodes which should perform actuations
and send the actuation commands back to the WSAN.

queries and we provided them with different actuation scenar-

ios. We asked them to write SQL queries to perform those

actuation tasks in both existing and the suggested approaches.

Finally we collected feedback from them regarding how they

found writing queries for actuation tasks in both approaches.

It turned out that each person participated in the survey

considers the existing approach of performing actuation tasks

has unnecessary syntax restrictions. All the participants con-

sider the modified virtual table with actuators as attributes is

more convenient to handle than the old table. As such they

have mentioned that UPDATE queries can be easily written

to perform actuation tasks naturally without using artificially

forced syntax parts of SELECT queries in existing approach.

We further noticed that most of them have struggled to write

queries using the existing syntax for the greenhouse scenario

given in Section I whilst they have written with a single query

for the same scenario as given in Query-17 using the proposed

syntax.

Query-17

UPDATE sensors AS sen1,sensors AS sen2,

sensors AS act1,sensors AS act2,

sensors AS act3

SET act1.air_cooler=’on’,

act2.screen_ctrl=’on’,

act3.sprinkler=’on’

WHERE

(sen1.nodeid=5 AND sen1.temperature>35)

AND

(sen2.nodeid=7 AND sen2.humidity>45)

AND

act1.nodeid=9 AND act2.nodeid=15 AND

act3.nodeid=23

ONCE;

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 2 3 4 5 6 7 8

a
c
tu

a
ti
o

n
 t

im
e

 (
m

s
)

number of fields in query

SELECT - actuation
UPDATE - actuation

Fig. 4. Performance comparison between actuation tasks performed by using
existing method (multiple SELECT queries) and and the suggested method
(UPDATE queries). x-axis contains the number of fields which are involved
in query while y-axis contains time to complete the actuation task.

C. Performance Impact

For evaluating the performance impact with respect to

the new mechanism, we used two prototype implementations

based on TikiriDB[9] which is a database abstraction imple-

mented on Contiki OS[6]. TikiriDB has three components

namely a node application, a serial forwarder and a client

application which are shown in Figure 2. The client appli-

cation accepts SQL queries from the user, parses them and

forward to the serial forwarder. The serial forwarder runs on

the PC which is connected to the base station of the WSAN.

Its task is to accept the queries which are coming from the

client application and forward them to the WSAN. Each node

in the network runs a copy of the node application which

executes the queries and generates results.

First prototype implementation provides the suggested UP-

DATE query syntax while the second prototype implemen-

tation provides the OUTPUT ACTION clause with SELECT

query. When the user issues a SELECT query, it is parsed

and sent to the network. Nodes respond with data which

are provided to the user. When an UPDATE query is issued

by the user, client application first collects the readings of

the necessary sensors and status of necessary actuators. Then

it processes that data to identify the nodes which have to

change their actuator status according to the query. Then client

application sends commands for those nodes to update their

actuator status. This functionality of the UPDATE query is

shown in Figure 3.

With these two prototype implementations we evaluated

whether there’s any performance impact when actuation tasks

are performed using the suggested syntax comparing it to

the existing syntax. We considered various actuation scenarios

which involve different number of attributes in the virtual ta-

ble. With respect to these scenarios we used queries from both

existing and suggested approaches. Figure 4 shows the time to

perform an actuation against the number of sensor / actuator

attributes which are involved in the actuation task. There’s a

significant performance difference between the two approaches

since traditional approach requires human intervention to issue

multiple queries to perform an actuation task while new syntax

eliminate multiple query usage.

V. DISCUSSION

Adding a list of functions to TinyDB SELECT query syntax

is a possible way to reduce the number of queries used for an

actuation task. However this option still employes low level

functions within SELECT queries to perform actuation tasks

without addressing the identified problems. Instead of adding

both sensors and actuators to the same virtual table another

possible approach would be to consider two separate virtual

tables for sensors and actuators. However, this may lead to

unnecessary complexities when performing an actuation task

on a node which has both sensors and actuators. This is

because the sensors and actuators of same node will reside

in two tables and joins will be required to handle them. For

the sake of simplicity we considered a single virtual table with

both sensors and actuators.

Due to the limitations in the syntax when we need to

perform an action based on an aggregated data, the UPDATE

query alone is not applicable. Using SELECT and UPDATE

queries collectively is necessary in such cases. A possible

solution would be to extend the current UPDATE query syntax

for nesting SELECT queries within it even though executing

such queries on the network would be extremely difficult.

According to the user survey, performing actuation tasks

with an UPDATE query is more convenient than using SE-

LECT queries with low level function calls. The declarative

nature of UPDATE syntax makes it easy to express complex

actuation tasks within a single query when compared to

the traditional approach where multiple queries may have

to involve with system dependent function calls. Since the

enhanced virtual table contains actuators as attributes, the user

gets the opportunity to easily find out the current status of

actuators in any given time. This also enables the user to

perform in-network actuation tasks not only based on sensor

values but also based on current actuator status.

As we have shown, UPDATE query syntax can be used to

perform almost any complex actuation requirement that can

arise in a wireless sensor actuator network(WSAN). The syn-

tactic support along with the aliases can be used to coordinate

multiple nodes with sensors and actuators by writing a single

UPDATE query. Comparing to the traditional approach, this

single query usage to perform an actuation has improved the

performance since multiple queries take more time to execute

with the additional time taken by human involvement. This

enables the WSAN to respond quickly for changes in the

environment.

Even though it appears like having NULL values in the

virtual data table where some sensors or actuators are absent

on a particular node as a drawback, it does not introduce any

performance impact. When a node receives a query asking for

some sensor / actuator attribute value which is not available

on the node, the node sends only the values of the attributes

which are available on the node. A Node does not send any

messages to the client application to inform that the value of a

particular sensor / actuator attribute is NULL. Because of this

reason, having lot of NULL values in the virtual data table

does not introduce any communication or any other resource

overhead on the network.

Just like the sensors in the virtual table, the addition of

actuator status does not add any extra storage requirement to

nodes in the network. Current status of an actuator can be

identified at run-time of a query on a particular node without

a need to store the status of actuators on the memory of a

node.

In our approach, client application is still a single point of

failure just like the traditional approach since all the sensor

and actuator coordination to perform an actuation task is done

by the client application side. We are planning to improve the

way an UPDATE query is executed in the future so that sensor-

actuator coordination is performed within the network without

any intermediate involvement of the client application.

VI. RELATED WORKS

With the introduction of the relational model[5] it has

become the ideal way of storing data in large amounts. The

structured query language or SQL[2] is the most widely used

language for efficiently express the criteria of querying data

from these relational databases. Because of the underlying

complexity in wireless sensor networks, researchers have sug-

gested the idea of abstracting WSN as a database[3], [7]. One

of the earliest such implementations is Cougar[16] which had

declarative queries to acquire sensor data. However, Cougar

did not consider the possibility of actuators present in the

network. The first implementation which supported handling

actuators in addition to sensors was TinyDB[12], [11] which

we discussed in the first two sections in this paper. However

weaknesses in TinyDBs data model and syntax has made it

difficult to use in complex in-network actuation scenarios.

According to [1], a proper coordination between nodes in

the network is necessary to achieve the in-network actuation

in a WSAN. In addition to the database abstraction approach

there are different other techniques used to coordinate and

perform in-network actuation tasks in WSANs [8], [14]. The

advantage of database abstraction over these approaches is the

declarative query interface which is more easier to use by non-

technical users.

VII. CONCLUSIONS

In this paper we presented a new approach to perform

actuation tasks in a wireless sensor-actuator network (WSAN)

with the declarative database abstraction. Traditional approach

lack support to perform complex actuation tasks and also the

declarative nature of its syntax is questionable. The enhance-

ments to the virtual data table with new syntax suggestions

eliminate those weaknesses in the existing approach. Our

evaluations show that in this new way of performing actuation

tasks, queries can be easily written and actuation tasks are

performed in less time when compared with the traditional

approach.

ACKNOWLEDGMENT

The authors would like to thank Chathura Suduwella and

Lakmal Weerawarne for their useful suggestions in the initial

work related to this research.

REFERENCES

[1] I. F. Akyildiz and I. H. Kasimoglu. Wireless sensor and actor networks:
research challenges. Ad Hoc Networks, 2(4):351 – 367, 2004.

[2] M. M. Astrahan and D. D. Chamberlin. Implementation of a structured
english query language. Commun. ACM, 18:580–588, October 1975.

[3] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor database systems.
In Proceedings of the Second International Conference on Mobile Data

Management, MDM ’01, pages 3–14, London, UK, 2001. Springer-
Verlag.

[4] D. D. Chaudhary, S. P. Nayse, and L. M. Waghmare. Application of
wireless sensor networks for greenhouse parameter control in precision
agriculture. In International Journal of Wireless and Mobile Networks,
IJWMN, 2011.

[5] E. F. Codd. A relational model of data for large shared data banks.
Commun. ACM, 13(6):377–387, 1970.

[6] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight and
flexible operating system for tiny networked sensors. Local Computer

Networks, Annual IEEE Conference on, 0:455–462, 2004.
[7] R. Govindan, J. Hellerstein, W. Hong, S. Madden, M. Franklin, and

S. Shenker. The sensor network as a database, 2002.
[8] M. Karpiński and V. Cahill. Stream-based macro-programming of wire-

less sensor, actuator network applications with sosna. In Proceedings

of the 5th workshop on Data management for sensor networks, DMSN
’08, pages 49–55, New York, NY, USA, 2008. ACM.

[9] N. M. Laxaman, M. D. J. S. Goonatillake, and K. D. Zoysa. Tikiridb:
Shared wireless sensor network database for multi-user data access.
CSSL, 2010.

[10] F. L. Lewis. Wireless sensor networks. In Smart Environments:

Technologies, Protocols, and Applications, New York, NY, USA, 2004.
[11] S. Madden, M. J. Franklin, J. Hellerstein, and W. Hong. The design of

an acquisitional query processor for sensor networks. In Proceedings

of the 2003 ACM SIGMOD international conference on Management of

data, SIGMOD ’03, pages 491–502, New York, NY, USA, 2003. ACM.
[12] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tinydb: An

acqusitional query processing system for sensor networks. ACM TODS,
2005.

[13] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson.
Wireless sensor networks for habitat monitoring. In Proceedings of

the 1st ACM international workshop on Wireless sensor networks and

applications, WSNA ’02, pages 88–97, New York, NY, USA, 2002.
ACM.

[14] T. Melodia, D. Pompili, V. C. Gungor, and I. F. Akyildiz. A distributed
coordination framework for wireless sensor and actor networks. In
Proceedings of the 6th ACM international symposium on Mobile ad hoc

networking and computing, MobiHoc ’05, pages 99–110, New York,
NY, USA, 2005. ACM.

[15] A. Sayakkara, W. Senanayake, K. Hewage, N. Laxaman, and
K. De Zoysa. The deployment of tikiridb for monitoring palm sap
production. In Real-World Wireless Sensor Networks, volume 6511 of
Lecture Notes in Computer Science, pages 182–185. Springer Berlin /
Heidelberg, 2010.

[16] Y. Yao and J. Gehrke. The cougar approach to in-network query
processing in sensor networks. SIGMOD Rec., 31:9–18, September
2002.

