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Fig. 1. Controlled/Instrumented EM signal Acquisition.Ă
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1. Introduction

Digital forensics involvesdataacquisition fromdigital devices inorder tohelp
progress corporate, civil and legal investigations. The emergence of the
Internet of Things (IoT) has revolutionised the potential of digital forensics by
opening up vast new sources of evidence. While IoT devices can provide
invaluable data for digital investigations, acquisition of data from IoT devices
is not a straightforward task. They are manufactured by various companies
with custom hardware and software designs. As a result, IoT devices lack
standard interfaces and forensic acquisitionmethods. This can often result in
a device requiring a memory chip-off procedure in order to access its data
(Watson and Dehghantanha, 2016).
EM side-channel analysis (EM-SCA) is a branch in information security
where the unintentional electromagnetic (EM) emissions from computing
devices (Kocher et al., 1999). This has been used for various purposes
including software behaviour detection, software modification detection,
malicious software identification, and data extraction (Sayakkara et al.,
2019a). The possibility of applying EM-SCA in digital forensic investiga-
tion scenarios involving IoT devices has been proposed recently (Sayakkara
et al., 2019b). When it is difficult or impossible to acquire forensic evidence
from an IoT device, observing EM emissions of the device can provide
valuable information to an investigator. This work addresses the challenge
of making EM-SCA a practical reality to digital forensic investigators by
introducing a software framework called EMvidence. The framework is
designed to facilitate extensibility through an EM plug-in model.

2. EMvidence forensic framework

The EMvidence framework consists of a main core with multiple default
modules and facilitates the addition of third-party plug-ins depending on
future requirements. Its main component is its core GUI that provides the
default interface to a user. It also manages the modules and plug-ins by
establishing communication between them in a coordinated fashion.
Together with the core GUI, the framework comes with three default
software modules that are essential to the normal operations of the
framework; data acquisition, data visualisation, and report generation.
Furthermore, depending on the requirements, third-party users can
quickly develop and integrate plug-ins to the core GUI. Such plug-ins may
provide various data analysis capabilities such as software behaviour
detection, cryptographic key recovery, etc. The source code of the frame-
work and its associated plug-ins are available at a Github repository.1

EMvidence supports two types of data acquisition methods. Firstly, the
observation of EM emission signals can be made for a predefined period of
time without any interaction or communicationwith the device under test
(DUT) from a few centimetres away. This is the approach used in a digital
forensic investigation scenario. Secondly, EM signals can be acquired while
actively interacting with the DUT in scenarios where it is safe to
communicate with the device through an interface, e.g., universal serial
bus (USB), universal asynchronous receiver/transmitter (UART), or Ether-
net. Fig. 1 illustrates the acquisition of EM traces in a coordinated fashion
from a target device. Once such data are used to build ML models, they can
be incorporated into the EMvidence framework to inspect similar IoT de-
vices in investigative scenarios.

3. Evaluation

Consider a hypothetical scenario where an IoT device has been deployed in
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a building as a part of an intruder detection system. The device consists of a
sensor that detects movements within a specified space of the premises.
The device consists of two actuators, an alarm and a door lock, that it can
control independently. Furthermore, the device is connected to a GSM
module in order to send and receive SMS. The device's firmware is pro-
grammed to continuously read the motion sensor to detect intrusions into
the premises. Upon detection, it can perform one of three tasks e locking
the door, firing an alarm, or sending a text message to the owner. At any
time, the device can be disabled by pressing a physical button that puts the
device into an idle state.
Fig. 2. Confusion Matrix of the IoT Device State Classifier.Ă
The hypothetical IoT device was emulated by using an Arduino Leonardo
board. A neural network classifier based on multi-layer perceptron (MLP)
architecture was selected to distinguish each state of the IoT device on the
EMvidence framework. Fig. 2 illustrates the confusion matrix of the clas-
sification results. The classifier was able to achieve an average F1-score of
99% in distinguishing the 5 IoT device states. This indicates that a pre-
trained model can identify internal software states of IoT devices. For
example, if it was identified that the device is in the idle state at the time
investigators arrived at the scene, it is clear that someone deliberately
turned the device into idle state in order to stop it from triggering the
intruder alarm. In that case, fingerprints on the button of the IoT device
could potentially help to identify the insider.
Fig. 3. Effect of the Sliding Window Step Size to the Data Collection Buffer over 10ms.Ă
The overhead of processing EM signals in real-time is evaluated as follows.
While EM signal capture device is set to 20MHz sampling rate, a sliding
window with a fixed width of 10ms was used to slide through the real-
time I-Q data feed. Each data window was then preprocessed in real-
time to generate the features and fed to a neural network-based binary
classifier to detect the presence of ECC cryptography operations. The step
size of the sliding window, i.e., the amount of overlap between consecutive
windows, was varied between 0.5ms and 10ms for different independent
trials. In all experiments, the total signal capturing duration was fixed to
10 s.
In Fig. 3, the graph on the top illustrates the number of windows produced
against the sliding window step size while the graph at the bottom illus-
trates the statistics of the number of data samples waiting in the real-time
buffer until the sliding window had processed them. It is evident that even
though the number of sliding windows to process increases with the
reduction of sliding window step size, it does not to incur any considerable
overhead to the real-time processing buffer. The production and con-
sumption of the EM samples were in an equilibrium.
4. Conclusion

With the ever-increasing applications of IoT systems in domestic and in-
dustrial environments, digital forensic investigations increasingly require
the extraction of digital evidence from them. The most forensically useful
information in IoT devices are currently extracted by intrusive inspections
of hardware that makes them less forensically sound. This work presented
the design of EMvidence, a framework for digital forensic investigators and
researchers to leverage unintentional EM radiation from IoT devices as an
information source. EMvidence is designed in a manner that it can be
easily extended with new functionalities to keep up with the dynamism of
IoT devices. Experimental demonstrations proved that ML classifiers can
be used to gain useful insights in IoT investigative scenarios.
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