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Abstract—Elephants generate infrasonic vocalisations that tra-
verse through the air for long distances. Utilising this phe-
nomenon, a previous work proposed a system, called Eloc, to
localise and track elephants in the wild. The Eloc system has
been demonstrated to be accurate in calculating the location
of infrasonic sources. However, it still lacks the capability to
accurately distinguish elephant infrasonic calls from various
other infrasonic sources using limited computing power on board.
Addressing this problem, the work presented in this paper
introduces an approach to distinguish elephant infrasonic calls
with a high accuracy on low-resourced hardware. Firstly, a
sequence of operations are performed to reduce the effect of
noise in the infrasonic signal captured by an Eloc node. Secondly,
a wavelet-based signal reconstruction technique is applied to
extract spectral features from the infrasonic signal. Finally, the
extracted features are fed to a pre-trained machine learning
classifier to distinguish the infrasonic vocalisations of elephants.
The experimental evaluation using Asian elephant (Elephas Max-
imus Maximus) infrasonic vocalisation datasets demonstrates that
the proposed approach is capable of accurately distinguishing
elephant infrasonic calls on low-resourced hardware platform of
the Eloc system, with accuracy levels over 82% under varying
environmental conditions.

Index Terms—passive acoustic monitoring, infrasonic detec-
tion, elephant rumble detection, wavelet transform, feature ex-
traction.

I. INTRODUCTION

The population of elephants in the world has dramatically
declined over the last few decades. At the commencement
of the 20th century there were an estimated 200,000 Asian
elephants, but at present, there are probably no more than
35,000 to 40,000 elephants left in the wild [1]. The human-
elephant conflict (HEC) is one of the major threats to wild
elephants, which has been caused by habitat loss and fragmen-
tation. In Asia, most of the areas that form elephant habitat are
in close proximity to human settlements. Therefore, conflicts
often emerge between animals foraging for food and the local
human population [2], causing life-threatening consequence to
both humans and elephants. For instance, in the year 2019, 121
people and 405 elephants lost their lives due to the human-
elephant conflict in Sri Lanka [3].
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Traditionally, several approaches have been used to keep
elephants away from human habitats and farm lands, such
as burning fires, lighting firecrackers, and implementing elec-
tric fencing. Although electric fence systems are effective at
controlling the movements of elephants, they have their own
limitations as well; they are relatively expensive to build to
cover a sufficiently large geographic area, and when built
incorrectly, can cause life-threatening injuries. Furthermore,
electric fences are subject to frequent breakdowns, which re-
quire labour-intensive maintenance. Frustrated by the damages
caused by elephants, some farmers resort to illegal methods,
such as shooting and poisoning elephants [4].

Instead of entirely relying on aggressive methods to drive
elephants away after their arrival, it would be more effective to
detect the presence and movements of elephants in advance. In
that way, accidental encounters with elephants can be avoided,
which will reduce the damage caused by HEC. The recent
developments of remote tracking systems, such as radio and
global positioning system (GPS) collars, enable the accurate
detection and tracking of elephants over a long period of
time [5]. Although such collars are effective and useful in
elephant conservation research to monitor their movements,
they are too expensive to be used at large scale to address the
general problem of HEC. Furthermore, the invasive nature of
radio collars obstruct the natural behaviour of elephants, and
their behaviour constantly causes damages to the devices. Un-
der these circumstances, more affordable and reliable elephant
tracking mechanisms are necessary.

Elephants use vocalizations for both long-range and short-
range communication, consisting of both lower and higher
frequencies. Moreover, these vocalisations can be classified
into different call types based on their physical properties [6].
There are four main types of vocalisations for Asian elephants,
namely, trumpet, roar, chirp, and rumble [7], [8]. Elephants use
these calls in various contexts such as when being disturbed,
playing with each other, moving in the presence of other
species or vehicles, and communicating within the herd. It
has been shown that, elephants produce low-frequency vocal-
isations – known as rumbles – when communicating between
herds over long distances [8]. A typical African male elephant
rumble fluctuates around a minimum of 12 Hz and a female
rumble at around 13 Hz [9]. In Asian elephants, these values
vary between 14 Hz to 24 Hz within a call duration of 1 to
25 seconds [8] due to their smaller vocal cords compared to
African elephants.

Since elephant rumbles contain low-frequency sound waves
that propagate longer distances without significant power
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attenuation, they can be detected from several hundred meters
away [10]. Previous studies have shown the possibility of
using these infrasonic rumbles of wild elephants to detect
their presence and possibly localizing them. However, there are
only a very few applications that have attempted to implement
such a system [11], [12], especially with low-cost hardware
platforms. A system that can be used to detect elephants at
large scale to minimise HEC requires reliable methods to
process elephant infrasonic data on low-powered devices with
minimum processing and time overhead. Currently, the lack
of such infrasonic data processing and analysing pipelines
hinders the practical deployment of infrasonic-based elephant
detection systems.

This work addresses the problem of detecting elephant
rumbles on low-powered devices through a novel approach that
consists a wavelet-based signal reconstruction technique. The
proposed approach is aimed at deploying on the previously
published Eloc elephant infrasonic capturing platform [12].
This study is an extension of our long-term attempt to mini-
mize human-elephant conflicts by early detection of elephants
near human habitats.

This paper makes the following contributions:
1) Shows that wavelet-based feature extraction is effective

at enabling elephant rumble detection on infrasonic data.
2) Presents a complete sound processing pipeline for in-

frasonic elephant rumble detection, which is capable of
operating with natural noisy situations, on top of the
resource-limited low-cost hardware platform.

3) Evaluates the proposed sound processing pipeline on
an elephant vocalisation dataset of Asian elephants, and
demonstrates its effectiveness.

The paper proceeds as follows. In Section II, the related
work of this domain are illustrated. In Section III , the
proposed automated elephant detection approach is described
in detail. The implementation and experiment setup are illus-
trated in Section IV, which is followed by the results of the
experiments in Section V. Finally, Section VI concludes the
paper.

II. RELATED WORK

Payne et al. first discovered that elephants generate infra-
sonic calls known as rumbles in the range of 14 Hz to 24
Hz [13]. Subsequent research has demonstrated that these
low-frequency vocalizations travel long distances up to 6
kilometres [14], [15]. This is due to the lower attenuation
of low-frequency sound in contrast to high-frequency sound.
When attempting to detect these infrasonic calls of elephants,
environmental factors, such as the temperature of the air and
the speed of the wind, are shown to have a considerable
impact [16]. Furthermore, the signal-to-noise ratio (SNR) of
the infrasonic capturing hardware plays a significant role in
the ability to successfully detect elephant infrasonic calls.

Zeppelzauer et al. introduced a novel spectro-temporal
signal enhancement method that improves the signal-to-noise
ratio in acoustic recordings, enabling effective detection of in-
frasound in noisy environments [15]. Based on the initial work,
Zeppelzauer et al. further developed an automated elephant

vocalisation detection technique with the objective of building
an early warning system for elephants [11]. In this approach,
the input signal is framed and transformed into spectrograms
using the fast fourier transform (FFT). The spectrogram is
then enhanced, filtered using a Greenwood filter bank, and
logarithmized. The resulting spectrogram is mapped to the
cepstral domain using the discrete cosine transform (DCT)
and the cepstral feature vectors are temporally aggregated and
classified using a trained support vector machine (SVM). The
classifier attained an 88.2% detection rate with a 13.7% false-
positive rate.

The study has considered a broad range of elephant vocal-
isations from 0 Hz to 500 Hz, where the infrasonic amounts
to only a small region. Due to this reason, although they
were able to detect elephant vocalisations, the detection mostly
depends on the higher harmonics of the vocalisations. Conse-
quently, this approach faces difficulties when detecting vocal-
isations at a longer distance, as higher frequency harmonics
highly attenuate with distance. Similarly, Venter et al. has
proposed another method that employs a sub-band pitch detec-
tion algorithm for automated detection of infrasound elephant
call [17]. The accuracy of this method also depends on the
availability of higher harmonics in elephant vocalisations.

Mohapatra et al. proposed a method to automatically detect
elephant rumbles using feature extraction techniques that in-
clude the Greenwood function cepstral coefficients (GFCC)
and the first three formant frequencies [18]. The GFCC
features were extracted similarly to mel frequency cepstral
coefficients (MFCC) extraction, while the formant frequen-
cies were obtained using linear predictive coding (LPC).
For classification, a feed-forward neural network trained with
backpropagation reached 90% accuracy but had a high false-
positive rate of 30%.

Bjorck et al. have made significant advancements in ele-
phant rumble detection using passive acoustic monitoring in-
corporating modern neural network architecture, state-of-the-
art training regimes, and data augmentation techniques [19].
The proposed system demonstrated a classification accuracy
of 89.72% by utilizing the fast Fourier transform (FFT) for
feature extraction and adopting a DenseNet neural network
for classification. In addition, they have introduced a novel
audio compression technique exclusively designed for elephant
rumbles, which is useful in data transmission.

Although multiple studies exist for the acoustic detection of
elephant infrasonic vocalisations as mentioned above, most of
them are done on African elephants. The research aimed at de-
tecting Asian elephant infrasonic vocalisations is very limited.
Furthermore, such work does not take the cost of deployment
on a large scale into account. Dabare et al. conducted a pre-
liminary study on detecting infrasonic vocalisations of Asian
elephants using low-cost hardware [20]. Their work considered
the Infiltec Model INFRA-20 device, which is comparably
cheaper than most commercially available infrasonic detectors
(≈US $ 350). According to experimental results, this device is
sensitive enough to capture elephant infrasonic vocalisations.

Sayakkara et al. proposed an infrasonic-based elephant
localisation system using a low-cost hardware platform [12].
For the purpose of this system, a device called Eloc node
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Fig. 1: High-level architecture of the proposed sound processing pipeline consisting of three modules to preprocess infrasonic
data, extract features, and select best features from them before feeding into a machine learning classifier.

was developed, which consists of two Panasonic WM-61A
microphones and a single board computer. This hardware
device costs about US $ 73 and more sensitive to infrasonic
than the previous INFRA-20 device. The proposed localisation
system works by calculating the time difference of arrival
(TDOA) of an elephant infrasonic call to the two microphones
on an Eloc node. The direction calculation is shown to be
highly accurate for angles between 30o to 90o. However, in
order for the localisation system to work, confirming that
a particular infrasonic signal originated from an elephant is
necessary, i.e., rumble detection.

Jayasuriya et al. explored the potential of using a support
vector machine (SVM) to distinguish elephant rumbles to be
used on Eloc nodes [21]. Their work adopted mel frequency
cepstral coefficients (MFCC) for feature extraction, which was
originally designed to process human vocals. Their approach is
shown to be most effective with data captured at a sample rate
of 48 kHz; with lower frequencies, the accuracy of elephant
vocalisation detection decreases. Since Eloc nodes capture data
at a sample rate of 11 kHz, their approach is not sufficiently
effective to be used on Eloc nodes to realise a low-cost
infrasonic-based elephant detection and localisation system.

The comprehensive survey by Dan Stowell [22] outlines the
progression of bioacoustics signal processing landscape. Ac-
cording to that study, it is evident that the recent advancements
in the domain—regardless of the specific animal species being
targeted—is moving towards the use of deep learning models.
The author highlights the challenge of computational resource
trade-off when attempting to run deep learning models on
resource constrained hardware.

III. PROPOSED SOUND-PROCESSING PIPELINE

This section details the design considerations and the indi-
vidual components of the proposed sound processing pipeline.
Figure 1 illustrates the high-level overview of the pipeline
consisting of a preprocessing, feature extraction, and feature
selection modules.

A. Design Considerations

Since Asian elephant rumbles fluctuate around 14 Hz
to 175 Hz (including harmonics), according to the
Nyquist–Shannon sampling theorem, a sampling rate of at least
360 Hz is necessary for capturing the particular frequency
range [23]. However, oversampling increases resolution, re-
duces noise, and helps avoid aliasing and phase distortion.
Which means oversampling can improve the performance of
applications which depend on information in the waveform
shape of the signal.

Although oversampling has several advantages, it requires
more computation power, computation time, and memory
during the signal processing. Since the proposed approach
intends to run on the Eloc node, the maximum recording and
processing sampling rate is limited to 11 kHz. This is due
to the limited computation power and memory on the Eloc
nodes. Furthermore, since it is required to transmit the detected
elephant rumbles to the central back-end over a cellular
network [12], the oversampling will increase the operational
cost. Therefore, this work considers a 600 Hz sampling rate
as the balanced sampling rate between computational cost and
the accuracy.

Initially, the infrasonic data should be segmented into
samples of equal length. As longer data segments can pose
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a computational and, consequently, an energy overhead to
the low-powered elephant infrasonic detector, i.e., Eloc node,
it is necessary to have shorter data segments. Therefore, a
segment length of 2 seconds was selected. The segmented
data goes through four main modules of the sound-processing
pipeline: pre-processing module, feature extraction module,
feature reduction module, and classification module. These
modules and their internal functionality will be described in
the following subsections.

B. Preprocessing Module

Figure 1 illustrates the preprocessing module as the first
component in the pipeline. It consists of three main steps:
Butterworth band-pass filter, wavelet-based denoising, and
beamforming-based stereo to mono conversion.

1) Butterworth Band-pass Filter: Although the hardware-
level low-pass filter in the Eloc node attenuates frequencies
above 150 Hz, it will still allow frequencies up to 300 Hz
to pass to a certain degree as the sample rate is 600 Hz.
Since elephant rumbles fluctuate around the range of 14 Hz
to 174 Hz, any signal components beyond that range contain
unwanted information for elephant rumble detection. More-
over, these unwanted signals may have an adverse effect on
the elephant rumble detection. Thus, a Butterworth band-pass
filter [24] was applied with a low-cutoff frequency of 10 Hz, a
high-cutoff frequency of 150 Hz, and a filter order of 9. Filter
order 9 was determined empirically by analyzing the frequency
response at several filter orders for the same sampling rate and
cutoff frequencies.

Figure 2 represents the frequency spectrum of an elephant
rumble recording (a) before and (b) after applying the Butter-
worth band-pass filter. It is clear that the tuned band-pass filter
removes the unwanted frequencies while maintaining uniform
sensitivity for the required frequency range. Since the filtering
process removes the frequency range from 0 Hz to 10 Hz and
frequencies above 150 Hz, it will mitigate the influence of
the low-frequency noise, and high-frequency noise that exists
beyond the typical range of elephant rumbles.

2) Beamforming-based Stereo to Mono Conversion: As
shown in Figure 3, two microphones in the Eloc node, located
at a distance of 3 metres from each other, simultaneously
captures the audio signal. Hence, the captured audio signals
are in the stereo format. Any sound waves coming either from
the front or the back, as seen in Figures 3, reach one of
the microphones earlier than the other. Thus, both channels
contain similar audio signals but with a slight phase difference.
As the sound waves are coming from the far-field to the Eloc
node, it can be assumed that the sound waves are parallel to
each other from the point of view of the microphones.

However, both microphones can be affected by background
noise coming from different directions to the primary sound
source. Therefore a beamforming-based stereo to mono con-
version approach, which minimizes the effect of such back-
ground noises, is designed. By considering the signal that
reaches the setup first, i.e., reference signal, and the signal
that is delayed, we can calculate the shift between the two
signals in term of samples as shown in Equation 1.
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Fig. 2: Frequency spectrum of an elephant rumble recording
(a) before applying the band-pass filter and (b) after applying
the band-pass filter.

Fig. 3: Basic setup of the Eloc deployment unit where the pair
of microphones (Eloc nodes) located at a 3m distance from
each other and capturing data in a time-synchronized manner.

In Equation 1, n is the number of samples in the given signal
segment, m is the number of shifted samples between the
two signals and Cref,delayed[m] is the cross-correlation matrix
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Fig. 4: The process of beamforming based stereo to mono
conversion

between two signals.

argmax

{
n∑

n=0

n∑
m=0

∥delayed{n} ref{n+m}∥

}

= argmax

(
n∑

n=0

∥Cref,delayed[m]∥

) (1)

After calculating m, the reference signal is shifted by adding
zero padding in front of the reference signal segment. Then, m
frames are lifted from the tail of the reference signal segment
to maintain the constant number of frames in the signal
segment. Finally, the shifted reference signal and the delayed
signal are merged by taking the average of the corresponding
frames in the two signals. This process improves the strength
of the dominant sound source while reducing the strength of
the noise coming from unrelated source. A flowchart of this
process of beamforming-based stereo to mono conversion is
presented in Figure 4.

C. Feature Extraction Module

The output signal segment from the pre-processing module
is taken as the input for the feature extraction module. The
proposed feature extraction module consists of three steps:

wavelet-based signal decomposition, wavelet-based signal re-
construction, and feature extraction (see Figure 1).

1) Wavelet Analysis: Fourier transform (FT) helps to con-
vert a time-domain signal into a frequency-domain signal in
order to identify its frequency components. However, FT has
a critical drawback; the time information of a signal is lost
during the transformation. In other words, when looking at an
FT of a signal, it is impossible to recognize when exactly a
particular event has occured [25]. But, this drawback is not
crucial for the analysis of stationary signals, i.e., the signals
with properties that do not significantly change over time.
However, most of the natural infrasonic has a short duration
and frequently-changing spectral characteristics. Because of
that, they are non-stationary signals. Therefore, FT is not suf-
ficient to analyse the behavior of elephant infrasonic signals.

To overcome the problem of losing time information, short-
time Fourier transform (STFT) was developed. STFT is one
of the most basic forms of time-frequency representations. It
involves a technique called windowing, which modifies the
FT to analyse smaller sections of the signal at a time [26].
Therefore, STFT can provide information to a certain level
about when and at what frequencies a signal event occurs.
However, the accuracy of these information depends on the
size of the fixed time window. This means, narrow window
sizes result in high time resolution but poor frequency resolu-
tion. In contrast, broad window sizes results in good frequency
resolution but poor time resolution. It is necessary to have a
more flexible approach where the resolution in both time and
frequency domains can be attained on demand.

The limitations of STFT can be overcome by using Wavelet
Transform (WT). It uses short windows at high frequen-
cies and long windows at low frequencies [27]. Wavelet
transform can be classified into two main groups: Discrete
Wavelet Transform (DWT) and Continuous Wavelet Trans-
form (CWT). CWT operates over every possible scale and
translation whereas DWT uses a specific subset of scale and
translation values. Among them, DWT is used to reduce
the computational burden of CWT [28]. It has been widely
used for analyzing non-stationary signals and provides a
time-frequency representation of the signals [29]. In DWT, a
signal is decomposed into low-frequency band (approximation
coefficients) and high-frequency band (detail coefficients). The
low-frequency band is used for further decomposition [28].

WT can often compress or denoise a signal without sig-
nificant degradation. These advantages of the wavelet method
have also been shown practically in the extraction of informa-
tion from ultrasonic Lamb waves where the received signal is
naturally noisy [30], [31]. DWT has also been widely used in
the ultrasonic signal analysis as a fast algorithm to obtain the
wavelet transform of a discrete time signal [32].

2) Feature Extraction from Infrasonic Data: The accuracy
of classification depends on the type of the selected mother
wavelet [33]. We evaluated the decomposition capability of
different mother wavelets with different decomposition levels
based on the energy-to-Shannon entropy-based self-evaluation
criterion given in [33]. Based on this evaluation, the mother
wavelet was selected to be Daubechies 3 (db3) with a decom-
position level of 3, which provide the maximum energy-to-
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(a)

(b)

Fig. 5: (a) DWT Decomposition tree. (b) Layout of the
resulting wavelet-transform vector. S is the input signal, cAn
is the approximate coefficients of nth level and cDn is detailed
coefficients of nth level.

Shannon entropy ratio for elephant rumble signal decompo-
sition. The signal segment length is 2 seconds as mentioned
previously; this includes 1200 samples, as the sample rate is
600 Hz.

Once DWT is applied to the signal segment with the
decomposition level 3, signal segments are divided into three
detail sub-bands cD1, cD2, and cD3. Furthermore it creates
the cA3 approximation sub-band. Figure 5 (a) represents the
DWT decomposition tree, while Figure 5 (b) illustrates the
layout of the coefficients in the output vector. After obtain-
ing the wavelet transform coefficients, the 7 reconstructed
signal variation of the original signal were reconstructed by
applying the inverse discrete wavelet transformation (IDWT)
to individual wavelet coefficient sub-bands. The combinations
of wavelet coefficients sub-bands are depicted in the Table I.
Figure 6 represents the process of generating reconstructed
signals. These reconstructed signal variations and the original
signal were used for the final feature extraction process.

Since DWT decomposes the original input signal into dif-
ferent frequency sub-bands, reconstructed signals only contain
the frequency components in the particular wavelet coeffi-
cients, which are used to reconstruct the signal. Extracting
features from such reconstructed signal variations will allow
extracting features from each frequency sub-band separately.

TABLE I: Description of reconstructed signals

A3 Reconstructed signal using approximation coef-
ficient sub-bands at level 3 (cA3)

D3 Reconstructed signal using detailed coefficients
sub-bands at level 3 (cD3)

D2 Reconstructed signal using detailed coefficients
sub-bands at level 2 (cD2)

D1 Reconstructed signal using detailed coefficients
sub-bands at level 1 (cD1)

all_recon Reconstructed signal using cD1-cD3 detailed
sub-bands and cA3 approximation sub-band

rm_cA3_cD1 Reconstructed signal using cD1 and cD2 de-
tailed sub-bands.

rm_cA3 Reconstructed signal using cD1-cD3 detailed
sub-bands

TABLE II: Feature categories

Chroma Features

Mel-Frequency Cepstral Coefficient

Root-Mean-Square (RMS) Energy

The spectral centroid

Spectral Contrast

Spectral bandwidth

Spectral-Roll-off

Zero Crossing Rate

Polynomial Features

That means noise with a particular frequency will only affect
one or several of the frequency sub-bands and other sub-bands
remain unaffected. Thus, combinations of features extracted
from the different frequency sub-bands are more robust to
noise than the features extracted from the entire frequency
range.

Furthermore, DWT does not merely divide the given signal
into frequency sub-bands. The iterative process of multi-
resolution wavelet decomposition depends on the mother
wavelet, which is used for decomposition. Mother wavelet
db3 was empirically selected to match with the properties of
elephant rumbles. Therefore, it has a higher tendency to pass
sound waves more similar to elephant rumbles while filtering
out waves significantly different than the elephant rumbles in
each iteration of multi-resolution wavelet decomposition.

During the feature extraction process, 84 different spec-
tral features under 9 main feature categories were extracted.
Table II illustrates these main feature categories, while Ta-
ble III depicts the composition of the extracted features.
These feature composition were extracted separately from
every reconstructed signal variation and the original signal.
Therefore, finally it ended up with 672 (84 × 8) extracted
features from a given signal segment. However, the entire
feature vector will not be used for training and prediction
purposes. The extracted feature vector is then passed on to
the feature selection module to identify the features that are
most effective.
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Fig. 6: Process of generating reconstructed signals.(a) Signal reconstruction using individual sub-bands, (b) Signal reconstruction
using all sub-bands, (c) Signal reconstruction without cA3, and (d) Signal reconstruction without cA3 and cD1

D. Feature Selection Module

Feature selection module assists in creating an accurate
predictive model. Proposed feature selection module consists
of two sub-modules: quantile transformer and feature selector
(see Figure 1). The output feature vector from the feature
extraction module is taken as the input for the feature selection
module.

1) Quantile Transformer: Many machine learning algo-
rithms are designed with an assumption that all features vary
on comparable scales while each feature takes values near
zero. In contrast, features in the feature vector provided by
the feature extraction module have different scales. Moreover,
because of the nature of the input signals, it has a higher

tendency to contain large number of outliers. This is because,
it is impossible to capture the exact elephant rumble in the nat-
ural environment. These two characteristics can decrease the
predictive performance of many machine learning algorithms.
Also, unscaled data can slow down the training and prediction
process of many machine learning algorithms.

The proposed approach uses quantile transformer [34] to
bring the extracted features into a comparable scale while
minimizing the effect of outliers. The quantile transformer
transforms the features to follow a uniform distribution, using
quantile information. This means, for a given feature, the quan-
tile transformer tends to flatten out the most frequent value.
The quantile transformer applies a nonlinear transformation to
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TABLE III: Feature categories

Features Number of values per frame

Chroma features 36

MFCC features 5

RMS Feature 1

Spectral centroid 1

Spectral bandwidth 1

Spectral contrast 6

Spectral roll-off 1

Zero Crossing Rate 1

Melspectrogram features 30

Polynomial features 2

Total number of features 84

TABLE IV: Supporting libraries.

LibROSA python package for music and audio analysis

PyWavelets Open Source wavelet transform software for the
Python programming language

scikit-learn Open source tools for data mining and data
analysis

resampy python module for efficient time-series resam-
pling

pandas Open source library providing high-
performance, easy-to-use data structures and
data analysis tools for the Python programming
language

each feature independently by using the cumulative density
function of a feature. Therefore, quantile transformer should
be tuned with the features extracted from the training dataset.

2) Feature Selector: For classification with small training
samples and high dimensionality, feature selection plays a vital
role in avoiding over-fitting problems and improving classifi-
cation performance. Feature selection will remove irrelevant,
correlated, and redundant features and choose a robust subset
of features that has the highest relevance to classification.
Proposed feature selection module has been built based on
the feature ranking with recursive feature elimination [35] and
cross-validated selection of the optimal number of features.

Since this is a wrapper feature selection approach, the
feature selection process depends on the given external clas-
sifier and the feature vector obtained from the training dataset
with corresponding class labels. As SVMs have been widely
used and demonstrated to be effective in detecting infrasonic
elephant vocalisations [11], [12], [21], this work also uses an
SVM as the classifier. The feature selection module is tuned
based on recursive feature elimination and cross-validated with
the SVM.

IV. IMPLEMENTATION AND EXPERIMENT SETUP

A. Implementation

The proposed feature extraction pipeline was implemented
using Python 3.5 with the libraries shown in Table IV.
Wider availability of the supporting libraries and the ability

for the same implementation to run on both the Desktop
computer (test environment), and the Eloc node (production
environment) are the main reasons to select Python as the
programming language. All of the features mentioned in
Table II are extracted using the feature extraction methods
in Python LibROSA [36] library. These feature extraction
methods take the audio file, sample rate, frame length, and hop
length (shift between frames) as the input arguments. However,
some of the LibROSA functions require some degree of tuning
based on the dataset and specific frequency range that is to be
analysed. These feature extraction methods are configured to
analyse the infrasonic as follows.

• chroma_cqt and chroma_cens
These two methods require the minimum frequency to
analyse and the number of octaves required to analyse
this minimum frequency as parameters. Since elephant
rumbles fluctuate around 14 Hz to 24 Hz (with harmonics
from 14 Hz to 175 Hz), 10 Hz was selected as the
minimum frequency with 4 octaves. It results in the
analysis of a frequency range from 10 Hz to 160 Hz
(minimum frequency 10 Hz, 1st octave at 20 Hz, 2nd

octave at 40 Hz, 3rd octave at 80 Hz, and 4th octave at
160 Hz)

• melspectrogram and mfcc
These two methods require the minimum and maximum
frequency range that has to be analyzed. To match with
the frequency range of elephant rumbles, 10 Hz was
selected as the minimum frequency and 160 Hz was
selected as the maximum frequency.

• spectral_contrast
This method requires the frequency cut-off for the first
frequency sub-band and the number of frequency bands
as input. As the minimum frequency cut-off, 5 Hz was
selected. Furthermore, six frequency sub-bands were con-
sidered, which result in the analysis of a frequency range
from 0 Hz to 160 Hz. ([0 Hz - 5 Hz] [5 Hz - 10 Hz]
[10 Hz - 20 Hz] [20 Hz - 40 Hz] [40 Hz - 80 Hz] [80 Hz
- 160 Hz])

Audacity 2.2.1, an open source, cross-platform audio soft-
ware for multi-track recording and editing, was used for the
experiments and for analytical purposes during this study.

B. Dataset

To train and evaluate the proposed approach, this work
uses a comprehensive elephant vocalisation dataset [23]. It
contains 5592 different elephant sound recordings that were
made in Sri Lanka, with 48 kHz sampling rate and 32-bit
resolution; the dataset has been manually annotated by an
expert in bioacoustics. There are 14 types of elephant calls
in the data. We only use rumble recordings among these 14
call types. For negative samples, a set of unclassified sound
clips from the same dataset were used; they are essentially the
background noise in the environment where the dataset was
originally captured.

Since the proposed approach targets the detection of ele-
phant rumbles captured by the Eloc deployment unit, we
constructed the synthesized dataset by replaying the above
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elephant rumble recordings and negative dataset using a sub-
woofer. Earlier work has shown that subwoofers can replay
elephant sounds that include fundamental frequency compo-
nents in the infrasonic range with sufficient output power to
emulate a real elephant [20]. For the experiments of this work,
the Eloc node was placed at a fixed location at 10 metres away
from the subwoofer to capture the replayed data.

Therefore, the two datasets used by this study is as follows:
• Dataset-1: Replayed elephant rumbles and negative

dataset captured using Eloc node.
• Dataset-2: A collection of originally-recorded elephant

rumbles and other non-elephant sounds captured in
the same field has used as the positive and negative
datasets. [23]

1) Training and testing datasets:
• Dataset-1 is divided into two parts for classifier evaluation

and feature selection module tuning. (75 positive samples
and 75 negative sample were used for the training while
25 positive and 25 negative samples used for testing.) –
This dataset is not used for the classifier training.

• Dataset-2 is divided into two parts for classifier training
and testing. (104 positive samples and 110 negative
sample were used for the training while 75 positive and
100 negative samples used for testing)

• Each data is processed with a 1-second window with
overlapping. (0.6-second shift between consecutive win-
dows).

2) Testing dataset with noise: First, we normalized the
testing samples in dataset-2 to -15dB; then noise samples
are normalized to -10dB, -15dB, -25dB, -35dB, and -45dB.
Finally, normalized noise clips and testing sample are mixed
programmatically to obtain the desired level of SNRdB ; -5dB,
0dB, 10dB, 20dB and 30dB respectively. SNRdb is expressed
in equation (2) where P is the average power, Psignal,dB =
10 log10(Psignal) and Pnoise,dB = 10 log10(Pnoise).

SNRdB = Psignal,dB − Pnoise,dB (2)

C. Quantile Transformer Tunings

A combination of features extracted from both datasets
have been used for the quantile transformer tuning process.
(Feature selection module tuning portion from the dataset-1
and classifier training portion form the dataset-2)

D. Feature Selector Tuning

In contrast with the quantile transformer tuning process,
here we only consider the features extracted from dataset-1
(replayed elephant rumbles and negative dataset captured using
Eloc node). Because even though the proposed approach uses
a very high-quality dataset (captured using domain-specific
device) during the training process, it should be able to classify
the sound signal captured by the Eloc node (which is not
sensitive as the domain-specific device and signal can be
slightly distorted because of low-cost hardware components).

The underlying assumption is, any feature subset which is
robust enough to classify the replayed version of elephant

rumbles captured by the ELOC node, should be able to classify
the direct elephant rumble captured by Eloc node or any
device more sensitive than the Eloc node. The validity of this
assumption will be discussed in the evaluation section.

E. Classifier Training

The SVM classifier is trained using training portion of
dataset-2. Since this dataset was recorded using a sample rate
of 48 kHz, it is converted firstly to the 600 Hz sample rate.
Then, all the steps described previously from preprocessing
to feature selection are applied to this dataset excluding the
beamforming-based stereo to mono conversion step because
these recordings are already in the mono format. Finally, hyper
parameters of the classifier have been tuned based on the cross-
validation score with different parameter combinations.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Effect of Noise Reduction
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Fig. 7: Rumble recording before noise reduction.
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Fig. 8: Rumble recording after the noise reduction.

Figures 7 and 8 illustrate the spectrograms of a short
segment of an elephant rumble recording before and after
the denoising process, respectively. As it can be observed,
sudden high-frequency and low-duration noise components
have been reduced considerably. The noise removal process
seems to affect the original rumble patterns (contours) to a
certain degree as well by causing minor distortions. However,
as shown in the later subsections, these distortions have
not affected the expected rumble detection accuracy; this is
because the machine learning models are trained on the noise-
removed data.
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Fig. 9: The feature importance of top 20 features. The red
bar represents feature important of the forest, along with their
inter-tree variability.

B. Individual Feature Importance

To analyse the significance of individual features toward
the classification, the importance of features using a forest
of tree method was considered, which is provided in [34].
Figure 9 represents the feature importance of top 20 features.
As can be seen, most of the features extracted from the
reconstructed variations of a signal have a higher importance
than the features extracted from the raw signal, proving the
validity of extracting features on top of the DWT.

C. Feature Selection for the Classifier Training

As described earlier, optimal combinations of features are
selected based on the recursive feature elimination score
and cross-validation score. Figure 10 represents the cross-
validation score variation with the number of features selected
for features extracted from (a) dataset-1 and (b) dataset-2.
According to the figure, it is clear that to classify the elephant
rumbles captured by the domain-specific device (dataset-2),
only 30 features are required. However, to classify the replayed
version of elephant rumbles (dataset-1) 196 features are nec-
essary. Low sensitivity and sound wave distortion due to the
low-cost hardware can be assumed as the primary reasons for
that.

D. Classifier Evaluation

The accuracy of classification on both datasets was eval-
uated. Table V and VI represent the classification accuracy
of dataset-1 and dataset-2 respectively. It is evident that, the
proposed approach achieves 93% classification accuracy with
dataset-2 and 82% classification accuracy with dataset-1. Thus,
it could be stated that it performs well (82%) in detecting
replayed versions of elephant rumbles.

As mentioned earlier, this work only considers the frequency
range from 10 Hz to 150 Hz. Because of that, the approach
depends on the fundamental infrasonic components and the

(a)

(b)

Fig. 10: Cross-validation score variation with the number of
features selected for features extracted from (a) dataset-1 and
(b) dataset-2

first few harmonics of elephant rumbles Furthermore, these
results were achieved with the 600 Hz sampling rate for
signal recording and processing, thus proving that the proposed
approach is efficient enough to operate on top of the resource-
limited hardware platform provided by Eloc nodes.

To evaluate the classification performance under the noisy
conditions, experiments with 5 noise types were carried out
under different SNR levels. Figures 11, 12, and 13 represent
the detection accuracy under different noise types. The soft-
ware code for the experimental evaluations of this work are
available to be used freely as a Github repository 1.

VI. CONCLUSION AND FURTHER WORK

This study presented a complete sound processing pipeline
for infrasonic elephant rumble detection under noisy natural

1https://github.com/vinuri-s/A-Robust-Feature-Extraction-Pipeline-for-
Detecting-Elephant-Rumbles
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TABLE V: Prediction performance with dataset-1

Precision Recall F1-score

Negative 0.79 0.94 0.84

Positive 0.92 0.69 0.79

Avg/Total 0.84 0.84 0.82

TABLE VI: Prediction performance with dataset-2

Precision Recall F1-score

Negative 0.91 0.99 0.95

Positive 0.99 0.84 0.90

Avg/Total 0.94 0.93 0.93
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Fig. 11: Detection accuracy with white noise under different
SNR
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Fig. 12: Detection accuracy with pink noise under different
SNR

environments, using the resource-limited and low-cost Eloc
hardware platform. According to the evaluation results, it is
evident that elephant infrasonic calls can be accurately de-
tected on low-resourced hardware. This study also contributed
to the domain of digital signal processing by exploring the
wavelet-based feature extraction for processing and automatic

10 5 0 5 10 15 20 25 30 35
SNR (dB)

45

50

55

60

65

70

75

80

85

90

De
te

ct
io

n 
Ac

cu
ra

cy
 (%

)

53
51 51 51

55

Fig. 13: Detection accuracy with petrol engine noise under
different SNR

detection of infrasonic data.
This approach has been tested on the detection of replayed

versions of elephant rumbles under the influence of artificially
generated noise. Furthermore, the proposed approach only
attempts to identify whether the dominant infrasonic signal of
a given time period was emitted by an elephant or not. Other
strong infrasonic sources with similar frequency patterns in the
vicinity may have an adversarial effects on the rumble detec-
tion process. Therefore, comprehensive testing and tuning of
the proposed method in natural environments is fundamentally
required in the future.

For the experiments of this work, the replayed dataset was
produced by placing an Eloc node at a fixed location to record
data played by a subwoofer. The distance between the Eloc
node and the infrasonic source, i.e., subwoofer, is an important
parameter to be considered when evaluating the effectiveness
of the proposed sound-processing pipeline. In the future, this
aspect will be evaluated in detail.

Elephants generate a variety of vocalisations, from the
infrasonic range to the human audible range. However, the
proposed approach of this work only considers a single vocal-
isation type, i.e., rumbles, for the detection of elephants. This
was due to that infrasonic travels farther distances in contrast
to higher-frequency sounds. But, it would be worthwhile in the
future to explore the potential of utilising and combining other
types of elephants vocalisations to enhance the capability of
elephant detection.
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