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Abstract

Investigation on smart devices has become an essential subdomain in digital forensics. The inherent diversity and complexity of
smart devices pose a challenge to the extraction of evidence without physically tampering with it, which is often a strict requirement
in law enforcement and legal proceedings. Recently, this has led to the application of non-intrusive Electromagnetic Side-Channel
Analysis (EM-SCA) as an emerging approach to extract forensic insights from smart devices. EM-SCA for digital forensics is still
in its infancy, and has only been tested on a small number of devices so far. Most importantly, the question still remains whether
Machine Learning (ML) models in EM-SCA are portable across multiple devices to be useful in digital forensics, i.e., cross-device
portability. This study experimentally explores this aspect of EM-SCA using a wide set of smart devices. The experiments using
various iPhones and Nordic Semiconductor nRF52-DK devices indicate that the direct application of pre-trained ML models across
multiple identical devices does not yield optimal outcomes (under 20% accuracy in most cases). Subsequent experiments included
collecting distinct samples of EM traces from all the devices to train new ML models with mixed device data; this also fell short
of expectations (still below 20% accuracy). This prompted the adoption of transfer learning techniques, which showed promise
for cross-model implementations. In particular, for the iPhone 13 and nRF52-DK devices, applying transfer learning techniques
resulted in achieving the highest accuracy, with accuracy scores of 98% and 96%, respectively. This result makes a significant
advancement in the application of EM-SCA to digital forensics by enabling the use of pre-trained models across identical or similar
devices.
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1. Introduction

The digital forensic investigation of smart devices involves
the systematic analysis of electronic evidence within smart-
phones, tablets, Internet of Things (IoT) devices, and other
embedded systems. It aims to uncover, preserve, and inter-
pret digital information, including files, communications, ap-
plication data, and system logs, for legal or corporate investiga-
tive purposes [1]. Digital forensics experts utilise specific tools
and techniques to identify digital footprints, reproduce events,
and provide insights into user behaviour related to criminal ac-
tivity. Such investigations are crucial in legal proceedings to
understand the digital interactions of individuals and organisa-
tions [2]. Digital forensics on smart devices protects individual
rights, aids efficient legal procedure, and strengthens cybersecu-
rity efforts, contributing to a safer and more secure digital envi-
ronment in a world where digital interactions are pervasive [3].

Smart devices provide a number of difficulties that make col-
lecting and analysing digital evidence a challenging task, e.g.,
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encryption, data protection, diversity of devices, cloud-based
data, data volume and fragmentation, privacy concerns, rapid
technology advancement, anti-forensics techniques, deleted
data, legal and jurisdictional hurdles, user authentication, real-
time data, and data integrity [4, 5, 6]. Non-invasive techniques
in digital forensic investigations refer to methods that do not
alter or damage the original digital evidence during the investi-
gation process. These techniques are crucial for preserving the
integrity of the evidence and ensuring that it remains admissible
in court.

In 2019, Sayakkara et al. introduced Electromagnetic Side-
Channel Analysis (EM-SCA) for the forensic examination of
both smartphones and IoT devices [7, 8]. This novel technique
revolves around the detection and analysis of electromagnetic
signals emitted by the internal components of these devices
during their operational activities. The EM-SCA technique in-
tensively examines the unintentional electromagnetic radiation
emissions generated by components, e.g., processors and mem-
ory, in an effort to obtain important insight about the operations,
interactions, and potential security flaws of the devices [9]. The
non-invasive nature of this technique enables the examination
of devices without changing their original state, preserving the
integrity of the evidence. The EM-SCA approach holds signifi-
cant promise for enhancing digital forensics investigations, as it
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provides a fresh perspective to uncovering hidden information
and potential threats of smartphones and IoT devices, while ad-
hering to strict non-invasive principles [10, 11].

There is an important limitation in EM-SCA that limits its
applicability to real-world investigations. The proposed model
is tested using distinct devices, including four different smart-
phones and four unique IoT devices [11]. However, the existing
studies fail to demonstrate that an ML model designed to ac-
quire forensic insights using EM-SCA can be applied to other
devices with comparable performance. This situation prompts
inquiries about the adaptability of a trained ML model across
many devices — even those of the same make and model.

ML models used in EM-SCA are closely linked to the devices
that have been used to create the training dataset. It is possi-
ble that a trained model may not accurately extract forensic in-
sights from a device, even if the device is of the same make and
model. Additionally, Sayakkara et al.’s ML model [10, 11] can-
not detect and acquire forensic insights from other devices with
shared internal components. In the recent research [12], authors
identified some limitations of using EM-SCA in the crossed-
IoT devices context, such as device variability, environmental
factors, and data collection and processing. They also demon-
strated the impact of the multi-core architectures of the proces-
sors on the accuracy and reliability of ML models for EM-SCA.
Then, they highlighted the possibility of using transfer learn-
ing in improving the performance of ML/Deep Leaning models
used in analysing EM-SCA data. However authors in [12] have
not validated their findings with smart devices with complex
System-on-Chip (SoC) architectures, in contrast to this work.
In this work, different models of iPhones, representing smart-
phones, and the Nordic Semiconductor nRF52-DK, represent-
ing IoT devices, were chosen to study the cross-device porta-
bility of the EM-SCA approach.

In experiments, the number of traces collected for each ac-
tivity from each device played a crucial role in validating the
model’s transferability both within the same device and across
identical devices. The methodology begins with the utilisation
of the Sayakkara et al.’s EM-SCA technique to construct be-
spoke models for each device. Subsequently, these pre-trained
models were directly applied to identical devices to determine
the portability of the model across similar-type devices. How-
ever, the experimental outcomes did not align with the antici-
pated results. Consequently, the pre-trained model was tested
on different samples of the same device taken at different times.
Again, this yielded results that did not align with expectations.
This also consolidates the findings in [12].

In response to these challenges, the study progressed to the
application of transfer learning techniques. Specifically, the
output layer of the pre-trained model was retrained, resulting in
a notable enhancement in accuracy. This transformation in the
research approach proved to be significant, directing the study
towards a more accurate, cross-device portable model imple-
mentation. Furthermore, this study is confined to conducting
experiments solely on identical devices and diverse samples of
the same devices.

This paper makes the following contributions:

• Experimentally investigates the behaviour of ML models
used in EM-SCA for digital forensics across devices from
the same make and model for real-world smart devices of
complex SoC architectures.

• Examines the impact of using simple ML-based ap-
proaches to train models using EM data from a single de-
vice to prove that such approaches do not guarantee the
same performance of the model on similar or different de-
vices with identical processors.

• Demonstrates the effectiveness of transfer learning in ad-
dressing cross-device portability of EM-SCA in investigat-
ing on smart and IoT devices.

The rest of this paper is organised as follows. The essential
information on the background of the field is provided in Sec-
tion 2, followed by the experimental methodology in Section 3.
The experiments and results of the smartphone and IoT device-
based studies are described in detail in Section 4. Section 5
provides a detailed discussion on the findings, followed by the
conclusion in Section 6.

2. Background

2.1. Side-Channel Analysis for Digital Forensics
Side-channel analysis is a sophisticated technique that ex-

ploits unintentional information leakage from electronic de-
vices during their operation. This leakage, which includes elec-
tromagnetic emissions, power consumption patterns, and tim-
ing discrepancies, can provide valuable insights into a device’s
activities, potentially revealing internal data including crypto-
graphic keys [13, 14, 15]. In digital forensics, side-channel
analysis can offer a non-invasive approach to inspect devices.
This method is particularly useful in uncovering information
from devices that might be locked or encrypted [16]. Despite its
advantages, side-channel analysis requires specialised knowl-
edge and tools due to its complexity. It has applications in var-
ious areas, including cryptography, cybersecurity, and reverse
engineering [17, 18].

EM-SCA presents a promising opportunity for acquiring
forensic insights from electronic devices. This approach cap-
italises on the unintentional electromagnetic radiation emitted
during the operation of the devices, which can carry valuable in-
formation about the device’s activities. Sayakkara et al. demon-
strated the applicability of EM-SCA in the context of IoT device
forensics, which has the capability to provide forensic insights
beyond what conventional methods can achieve [11]. Further-
more, their work highlights how electromagnetic side-channel
analysis can be utilised not only for forensic purposes, but also
to identify vulnerabilities and potential attack vectors in IoT
devices. This underscores the versatility of EM-SCA in both
offensive and defensive security contexts [8, 19, 9, 20]

2.2. The Acquisition of EM Side-Channel Radiation
The electrical components of computing equipment generate

EM radiation as an effect of internal operations. Both smart-
phones and IoT devices have a variety of internal EM emitting
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components, including processors, RAM, bus lines, network
adaptors, video and audio units, etc. These interior parts are
often associated with a System-on-Chip (SoC) that effortlessly
generates EM radiation at its system clock frequency. This EM
radiation can carry crucial information leaked during the oper-
ation of internal components. Attackers can exploit this leaked
information for their own advantage [11].

The EM radiation associated with various software be-
haviours from IoT devices and smartphones has been identified
as a raw source for EM-SCA for the acquisition of digital foren-
sic insight [10, 11, 21]. Researchers can identify and measure
the EM radiation produced during software activities by posi-
tioning specialised sensors or probes in close proximity to the
device. This radiation contains minimal but observable patterns
that are related to the particular actions and processes taking
place within the components of a device. These patterns can be
analysed and correlated with the software activities being per-
formed at the time.

Software Defined Radios (SDRs) are a specific kind of wire-
less hardware equipment that can capture analogue electromag-
netic radiation signals and digitise them to be processed with
software tools [9, 22]. HackRF One SDR is one of such tools
that has been used to capture EM radiation from IoT devices
and smartphones [23]. A H-loop near-field antenna attached to
a HackRF One SDR has been used to identify the EM radiation
of various software behaviours. Usually, the antenna is moved
over the target device to get closer to the SoC processor - since
it is anticipated that the SoC would leak crucial information
loudest about the internal operations of the device.

Collected EM radiation can also provide insights into the
software execution on smart devices, revealing information
about the type of applications being used, the intensity of pro-
cessing, and even potential security vulnerabilities. This ap-
proach can be utilised in digital forensics to reconstruct a time-
line of a device’s activities, aiding in investigations to under-
stand the sequence of events leading up to a particular situation.

2.3. Transfer Learning for Digital Forensics
Transfer learning has emerged as a prominent trend in the

current era of artificial intelligence. Transfer learning involves
extracting insights from one problem domain and applying
these insights to address a similar, new problem. Transfer learn-
ing strategies enable the sharing of knowledge, improving gen-
eralisation and overcoming the limitations of isolated learning
procedures. Pre-trained ML models are particularly recom-
mended for the problem of classification. It has the potential
to use information from a previously trained model when faced
with a new problem, greatly decreasing the time and effort re-
quired to build a new model from scratch [24, 25].

Transfer learning is experiencing increased adoption, espe-
cially in comparison to supervised learning, in both commercial
and research domains [26]. The notable advantages of trans-
fer learning over traditional machine learning methods are ev-
ident. Traditional learning operates in isolation, requiring sub-
stantial data volumes for accurate learning and classification.
In contrast, transfer learning leverages knowledge from pre-
viously mastered domains, eliminating the need for extensive

datasets [27]. Consequently, transfer learning accelerates pro-
cessing, conserves memory, reduces space requirements, and
saves power. A notable benefit is that one does not need to be
a deep learning expert to execute operations; knowledge from
analogous situations suffices.

The idea of transfer learning for EM-SCA is a useful and
cutting-edge method for digital forensic investigations on smart
devices. Transfer learning makes use of the vast amounts of
data and expertise to improve the precision and effectiveness
of forensic investigation by collecting EM traces from specific
devices or groups of devices that are similar to those in ques-
tion [28, 29]. In this context, transfer learning makes it easier to
apply the knowledge learned from one investigation to another,
allowing researchers to make use of the patterns and signatures
present in EM traces. This strategy enables researchers to de-
velop models, algorithms, and approaches that can recognise
and interpret EM signals more successfully by leveraging data
from known examples or comparable equipment [25].

2.4. Cross-Device Portability of Side-Channel Analysis
In the context of digital forensic investigation, the impor-

tance of a cross-device portable model becomes crucial - es-
pecially when smart devices are present at crime scenes. Smart
devices have become an essential part of human interaction and
communication in today’s interconnected society, making them
potential sources of critical evidence in investigative cases. In-
vestigators face a significant hurdle due to the diversity of smart
devices, which includes different brands, models, components,
and operating systems. This problem can be solved by a cross-
device portable model that provides a standardised representa-
tion of a particular smart device. Such a model can be utilised
for performing digital forensic analysis on many kinds of smart
devices. This approach has a multitude of benefits: efficiency,
consistency, adaptability, resource optimisation, comprehensive
insight, reduced learning curve, and legal credibility.

Performing EM and power side-channel attacks using deep
learning models has been the focus of the security commu-
nity in recent years [30, 31, 32, 33, 34, 35]. The possibil-
ity for adopting distinctive characteristics, such as the appli-
cability of one device’s knowledge to another, regardless of
whether they share the same manufacturer or belong to com-
pletely separate families, is revealed by cross-knowledge, and
cross-family side-channel attacks respectively [36, 37]. An idea
encompasses the transferability of machine learning models be-
tween various types, which means that regardless of the charac-
teristics of each model, the knowledge gained from one model
might be useful for another model known as cross-model/cross-
domain side-channel attack [30, 38]. In essence, a cross-device
portable model can streamline and enhance digital forensic in-
vestigations involving smart devices. It empowers investigators
to efficiently and consistently extract evidence from a diverse
range of devices.

3. Experimental Methodology

This study is carried out using two different avenues in order
to explore cross-device portability among various smart devices
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in digital forensics investigations. The first avenue involves the
dedicated collection of a diverse range of smartphones, each
segmented based on their unique features and attributes. In the
second avenue, the study broadens its focus to include IoT de-
vices. The selected embedded hardware platform is representa-
tive of typical IoT devices. The subsequent sections provide a
detailed explanation of the two avenues.

3.1. Methodology for EM Data Acquisition

This study employs the HackRF One SDR, which has a fre-
quency range of 1 MHz to 6 GHz, and a maximum sampling
rate of 20 MHz [11]. Configuration and data processing use
the GNU Radio library and its graphical interface, GNU Radio
Companion (GRC), for building EM data processing pipeline.
The EM radiation under investigation originates from the SoC
processor of the Device-Under-Test (DUT), and proximity to
the SoC during data acquisition improves signal reception. To
achieve this, an RF Explorer near-field H-loop antenna is con-
nected to the HackRF One device for close-proximity data ac-
quisition from the DUT.

Identifying the optimal location for maximum signal recep-
tion involves manually moving the near-field antenna while
plotting the spectrogram of the received signal at the CPU
clock frequency of the DUT. The position where the signal
is the strongest is fixed for subsequent EM trace acquisition,
forming the dataset. Although existing literature explores tools
and algorithms for determining the ideal signal reception loca-
tion [39], this study limits the detection of optimum position for
each considered DUT to manual observation of signal strength.

The key to obtaining high-quality EM trace data on the
HackRF device lies in determining optimal signal amplification
values. Setting amplification too low can make it challenging
to capture weak EM radiation from a DUT. On the other hand,
excessive signal amplification may amplify external noise, re-
sulting in a cluttered EM trace file. The determination of ampli-
fication settings involved empirical experimentation with vari-
ous configurations, considering signal clarity across different
devices in the existing work [11]. Hence, in line with the find-
ings from the previous study, the radio frequency power am-
plifier (RF), the low noise amplifier (IF), and the variable-gain
amplifier (BB) are consistently configured at 14 dB, 40 dB, and
18 dB, respectively, throughout the experiments [11].

3.2. Experiments with Smartphones

In order to perform experiments with smartphones, iPhones
were selected as they have a large user base. The devices were
divided according to their version, model, processor type, and
architecture. Table 1 provides an overview of the specifics of
the selected devices. The system clock frequency was used to
calibrate GNU Radio Companion (GRC) software to capture
EM traces from the location of the SoC of each device.

The following ten activities were conducted on each of the
selected iPhones to observe and collect EM radiation: calendar-
app, camera-photo, camera-video, email-app, gallery-app,
home-screen, idle, phone-app, sms-app, and web-browser-app.
EM traces of each activity were recorded from each iPhone at

Figure 1: Acquisition of electromagnetic (EM) traces while carrying out var-
ious software activities on the iPhone using the HackRF One SDR connected
with h-loop near-field antenna and controlled by GNU Radio Companion.

its corresponding system clock frequency, as shown in Table 1.
This process is described in detail in Section 2.2. A HackRF
One, a computer with the GRC software installed, and a H-
loop near-field antenna was used to gather EM traces. Figure 1
shows the hardware arrangement of the EM signal acquisition
process. The GRC software uses a flow graph to construct the
parameter configuration for the data gathering, as depicted in
Figure 2. Here, the sample rates are defined as the number of
samples per second, and the system clock frequency of each
iPhone is allocated to the variable centre frequency. Osmocom
Source represents attributes of HackRF One device. Frequency
Sink and Waterfall Sink are used to recognise peak signal and
the pattern of EM signals at the proper frequency point. In addi-
tion, File Sink is used to store the traces file in the .cfile format.

Table 1: Specifications of the targeted devices for capturing EM trace files.

Device System-on-
Chip

Architecture CPU
Frequency
(cores)

Device
Count

iPhone 4S Apple A5 ARMv7-A 1GHz (2) 1

iPhone 6S Apple A9 ARMv8-A 1.85GHz
(2)

1

iPhone 8 Apple A11
Bionic

ARMv8-A 2.39GHz
(6)

1

iPhone 13 Apple A15
Bionic

ARMv8.5-A 3.23 GHz
(6)

3

iPhone 14
Pro

Apple A16
Bionic

ARMv8.6-A 3.46 GHz
(6)

1

3.3. Experiments with IoT

The Nordic Semiconductor nRF52-DK development kit was
selected to represent typical IoT devices. Two identical nRF52-
DK devices were chosen that contain nRF52832 System-
on-Chip (SoC) with a maximum system clock frequency of
2.4 GHz. Eight distinct software activities were selected
to capture and evaluate EM traces: blinky, blinky_freertos,
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File Sink

File: ...el/home_screen.cfile

Unbuffered: Off

Append file: Overwrite

outcommand
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Number Channels: 1
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Ch0: Gain Mode: False

Ch0: RF Gain (dB): 14
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Figure 2: A flow diagram of the smartphone used to set the parameters for
acquiring EM traces from each individual smartphone.

Figure 3: Acquisition of electromagnetic (EM) traces while carrying out var-
ious software activities on the Nordic Semiconductor nRF52-DK using the
HackRF One SDR connected with h-loop near-field antenna.
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Figure 4: The flow diagram used to set the parameters for acquiring EM traces
from each individual Nordic Semiconductor nRF52-DK device.

blinky_rtc_freertos, blinky_systick, led_softblink, BLINK_new,
IDLE_new, and Matrix_multiplication_new. Each programme
is installed into the chip using SEGGER Embedded Studio soft-
ware. The hardware setup for acquiring EM signals from the
nRF52-DK devices is shown in Figure 3.

The system clock frequency of the nRF52-DK is set as the
center frequency in the GRC utility sofware’s flow graph. Other
components, such as Waterfall Sink, Frequency Sinks, and File
Sinks, are also included. Figure 4 depicts the GRC flow graph
for collecting EM data from nRF52-DK devices.

3.4. Prepossessing Procedure

EM radiation was sampled at 20 MHz, resulting in 10 EM
trace files per iPhone and 8 EM trace files per nRF52-DK de-
vice. Each trace file, representing a time-domain signal, un-
derwent Short-Time Fourier Transform (STFT) processing to
create frequency-domain windows. In deep learning, these win-
dows served as training instances, labeled with the correspond-
ing smartphone software activities.

The resulting EM datasets for each smartdevice were used to
build individual deep learning models for device-specific soft-
ware activity identification. Certain hyperparameters depended
on the EM dataset dimensions, and during hyperparameter tun-
ing, specific STFT operation settings (FFT window size and
overlapping samples) were adjusted.

4. Experiments and Results

This section describes the implementation of machine
learning-based EM-SCA approach after the EM traces of the
iPhones and nRF52-DK devices have been recorded. The over-
all EM-SCA approach for cross-device and cross-model imple-
mentation among the selected devices is illustrated in Figure 5.
The data and code used for the experiments of this work are
available on a publicly accessible GitHub repository 1.

4.1. Experiments with Smartphones

4.1.1. Experiment 1: An ML model per Device
Sayakkara et al. used Multi-Layer Perceptron (MLP) ma-

chine learning models to identify various software behaviours
of smartphones using captured EM traces [10]. However, in
their work, individual models were developed for each indi-
vidual device using its corresponding captured EM data. To
start, this work reproduces the same approach to evaluate its
performance on a specific set of iPhones. Seven EM trace files
were collected from the seven different iPhones mentioned in
Table 1. Among them, there were 3 iPhone 13 devices, referred
to as iPhone13_I, iPhone13_II, and iPhone13_III in the rest of
this work.

Using the acquired EM data, a bespoke model was created
for each smartphone using their respective datasets. For this
purpose, 10,000 samples from each EM trace file representing
a particular software activity were used. The relevant software
activity is considered as the class/label in this instance. The
structure of the MLP model used for each devices is shown in
the Table 2. The input layer of the model consists of 2,048
feature vectors as input shape. There are six intermediate dense
layers with a Rectified Linear Units (ReLU) activation function,
followed by an output layer with ten nodes that provides the
number of classes in each dataset. A total of 4,511,210 distinct
parameters can be trained on the dataset.

The model performs a 30-epoch training phase. This duration
was determined after evaluating the ML model across epochs
ranging from 5 to 100, with 30 identified as the optimal number.

1https://github.com/Lojenaa/Portability-of-Devices-in-EMSCA.git
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No.	of	
Parameters

Output	ShapeLayer(type)

2868600(None,	1400)dense	(Dense)	

1120800(None,	800)	dense_1	(Dense)	

400500(None,	500)	dense_2	(Dense)	

100200(None,	200)	dense_3	(Dense)	

20100(None,	100)	dense_4	(Dense)	

1010(None,	10)dense_5	(Dense)	

Total	params:	4,511,210
Trainable	params:	4,511,210
Non-trainable	params:	0

No.	of	
Parameters

Output	ShapeLayer(type)

2868600(None,	1400)dense	(Dense)	

1120800(None,	800)	dense_1	(Dense)	

400500(None,	500)	dense_2	(Dense)	

100200(None,	200)	dense_3	(Dense)	

20100(None,	100)	dense_4	(Dense)	

1010(None,	10)dense_5	(Dense)	

Total	params:	4,511,210
Trainable	params:	1,010
Non-trainable	params:	4,510,200

MLP	model	for	newly	
collected	data	

(iPhone	EM	traces)
Cross-model	/	cross-device	
implementation	using	
transfer	learning

Cross-device	implementation	
between	identical	devices	

(iPhone13)

Cross-model	implementation	
across	various	samples	of	

identical devices

Comparable	step-by-step	
procedure	for	Nordic	
semiconductor

No.	of	
Parameters

Output	ShapeLayer(type)

2,868,600(None,	1400)dense	(Dense)	

1,120,800(None,	800)	dense_1	(Dense)	

400,500(None,	500)	dense_2	(Dense)	

100,200(None,	200)	dense_3	(Dense)	

20,100(None,	100)	dense_4	(Dense)	

808(None,	8)dense_5	(Dense)	

Total	params:	4,511,008
Trainable	params:	4,511,008
Non-trainable	params:	0

Figure 5: The step-by-step procedure of the experiments involving iPhone and Nordic Semiconductor nRF52-DK devices.

Table 2: The structure of the machine learning model utilising the recently
acquired smartphone dataset

Layer (type) Output Shape No. of Parameters
dense (Dense) (None, 1400) 2,868,600

dense_1 (Dense) (None, 800) 1,120,800

dense_2 (Dense) (None, 500) 400,500

dense_3 (Dense) (None, 200) 100,200

dense_4 (Dense) (None, 100) 20,100

dense_5 (Dense) (None, 10) 1,010

The training employs the opt optimizer and a sparse categorical
cross-entropy loss function. Figure 6 illustrates the observation
of the accuracy of the acquired EM traces over various iPhone
types. The average accuracy of most bespoke models was 99%
when testing on each specific device. Additionally, Figure 7
depicts the confusion matrix resulting from validation of one
particular iPhone 13 device.

4.1.2. Experiment 2: Models across Identical Devices
The previous experiment demonstrated that a machine learn-

ing model trained and tested using the EM data from the same
device achieves high accuracy. However, the question arises
whether a trained and tested model on one specific device would
perform with similar accuracy when exposed to new testing
data acquired from another device of the same make and model.
To explore this aspect, the three ML models were created using
the specific traces from each of the three iPhone 13 devices.
Accordingly the model from one device was tested by feed-
ing it samples from the traces of the other two devices. For
instance, the previously saved model for the iPhone 13_I is im-
mediately fed with to the datasets from the iPhone 13_II and
iPhone 13_III. Unfortunately, it was observed that, even if the
devices are of the same make and model, the accuracy fell short
of expected values; the accuracy was extremely poor (0.1050
and 0.2232 respectively). Table 3’s Sayakkara et al.’s EM-SCA
appraoch column displays the reaming findings of the direct
testing of three iPhone 13 models.

iPhone4S_I
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iPhone8_I
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Figure 6: The study applied Sayakkara et al.’s EM-SCA model to assess device
accuracy. It utilized specific datasets and EM traces for different iPhone activ-
ities, displaying testing accuracy using the MLP machine learning model with
activities on the x-axis and accuracy on the y-axis.

This experiment shows that existing manner of training mod-
els for Sayakkara et al.’s EM-SCA does not adhere to the fun-
damental concept of cross-device portability. Even with three
identical iPhone 13s, the model trained using the data from one
iPhone 13 is not transferable to the other two devices. To in-
vestigate further, the idle activity data from the three iPhones
were considered as three separate classes to see how different
they are. A Principle Component Analysis (PCA) utilising the
first three components was performed on this three class mixed
data and — as shown in Figure 8 — it was found that the idle
activity from three iPhone 13s shows distinct patterns, making
it difficult for ML to distinguish between identical components.

Additionally, an MLP model was created to using the traces
from the three iPhone 13s to distinguish their corresponding
idle classes, as shown in Table 4. In this MLP model, there are
five hidden layers in total, as well as an output layer with three
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Table 3: Cross-device portability validation to evaluate the accuracy value by applying Sayakkara et al.’s EM-SCA model on three identical devices of the iPhone
13 device type shown in the first three column under the Testing accuracy and applying transfer learning on the Sayakkara et al.’s EM-SCA approach shown in last
three column under the testing accuracy.

Model Name
Testing Accuracy for each identical iPhone 13

Sayakkara et al.’s EM-SCA approach Transfer learning in Sayakkara et al.’s EM-SCA approach
iPhone13-I iPhone13-II iPhone13-III iPhone13-I iPhone13-II iPhone13-III

iPhone13-I-model.h5 0.9998 0.1050 0.2232 - 0.9559 0.7034

iPhone13-II-model.h5 0.0938 0.9998 0.1063 0.8146 - 0.7378

iPhone13-III-model.h5 0.1010 0.1000 0.9994 0.7000 0.8669 -
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Figure 7: Confusion matrix of one of the dataset. The implementation of the
Sayakkara et al.’s MLP machine learning model while operating ten different
iPhone 13 software behaviours.

Figure 8: Observation of idle activity on three iPhone 13s. A 3D scatter plot of
the idle activity from three identical iPhone 13 devices is seen by using the first
three components of PCA value from the obtained iPhone 13s EM trace.

nodes that represent the idle class of three identical iPhone 13s.
A total of 4,510,503 parameters are used to train the dataset.

Table 4: The layout of the MLP machine learning model employing idle activ-
ities of three identical iPhone 13 dataset

Layer (type) Output Shape No. of Parameters
dense (Dense) (None, 1400) 2,868,600

dense_1 (Dense) (None, 800) 1,120,800

dense_2 (Dense) (None, 500) 400,500

dense_3 (Dense) (None, 200) 100,200

dense_4 (Dense) (None, 100) 20,100

dense_5 (Dense) (None, 3) 153
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Figure 9: Confusion matrix of three iPhone 13 identical devices using an
Sayakkara et al.’s EM-SCA model employing MLP machine learning approach
to assess the cross-device portability of the similar type of devices.

The confusion matrix of three identical iPhone 13 devices, as
shown in Figure 9, was generated after 30 iterations. The results
indicate that the model can individually identify each idle class
of three iPhone 13 devices with 100% accuracy. It reenforces
the finding that a model trained using the traces from one par-
ticular device is not transferable to another device - even with
the same make and model.

4.1.3. Experiment 3: Multiple Datasets from the Same Device
In this experiment, multiple datasets were captured from the

same device, separated by time, i.e., captured on different days.
The objective was to explore how the radiation captured from
the same device varies its nature across time, affecting the abil-
ity to have a stable ML model to recognise software activities
running on it. Accordingly, trace datasets were created for the
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Figure 10: The accuracy of the same set of EM signals for the different iPhone
6S, 13, and 14 Pro devices was compared using the direct machine learning
model of the EM-SCA approach and the transfer learning technique.

iPhone 6S, iPhone 13, and iPhone 14 Pro devices repeatedly.
Subsequently, a model was trained for each device using the
dataset created from the same device at a particular day. Then,
each model was tested using the datasets of the same devices
taken on another day.

The green bars of Figure 10 illustrate the classification accu-
racy of each considered iPhone device models when tested with
datasets from different days. The results indicate that traces
taken across different times from the same device are consider-
ably different. This may have been caused due to minor varia-
tion in the data acquisition process, such as the different place-
ment locations of the H-loop antenna, as well as variation of
external EM noise sources in different days. Under these cir-
cumstances, it may be necessary to produce EM trace datasets
with a significant variety by distributing it across time.

4.1.4. Experiment 4: Retraining Output Layer of Same Device
Instead of applying a trained model directly to a new trace

dataset of the same device to validate its performance, a transfer
learning technique can be used to adjust a pretrained model to a
new trace dataset. For this purpose, the final layer (i.e., output
layer) of the previously trained model, is trained while the other
layers are frozen across different new trace datasets as shown
in the Table 2. The previously trained model is reconstructed
with 4,511,210 parameters, among that, 1,010 trainable param-
eters, and 4,510,200 non-trainable parameters for training the
last layer across 30 epochs.

The yellow bars in Figure 10 illustrate the accuracy of the
ML models of each iPhone models with retrained final layer by
new datasets from the same device. It is evident that the accu-
racy of the transfer learning models are significantly higher than
models that do not have retrained output layers. The iPhone 13
exhibits a significant improvement over the other two versions
of iPhones. The accuracy levels for the iPhone 6s and the 14 Pro
are approximately 53% and 61% respectively. Therefore, the
accuracy obtained using the transfer learning technique is bet-
ter than that achieved using direct cross-model machine learn-
ing technique.
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Figure 11: The learning time of the same set of EM signals for the different
iPhone 6S, 13, and 14 Pro devices was compared using the direct machine
learning model of the EM-SCA approach and the transfer learning technique.

The training time of models were also compared between the
Experiment 3 and 4; the latter is comparable to being less than
it was when training a complete model initially in the former,
as shown in Figure 11. The time required to train the entire
dataset for each iPhone 6s, 13, and 14 Pro initially using the
direct model for 30 epochs is displayed as green bars in Fig-
ure 11, whereas the time required to train just the final layer for
30 epochs using the transfer learning technique is shown as yel-
low bars. It is abundantly clear that using the transfer learning
technique saves a significant amount of time compared to train-
ing the entire dataset, which is one of the key considerations
when conducting an investigation on a smart device to obtain
forensic insights.

4.1.5. Experiment 5: Transfer Learning with Multiple Devices
Based on the findings of the previous experiments, it is ev-

ident that using a transfer learning approach improves the ro-
bustness of ML models. To further the cross-device portabil-
ity requirement, the final experiment on iPhones considered the
possiblity of transferring a model across data from multiple de-
vices of the same make and model. Accordingly, the pre-trained
individual models of each iPhone 13 device were retrained us-
ing the trace datasets of other iPhone 13 comparable devices
using transfer learning technique, by only retraining the output
layer of all three iPhone 13 models. This is done in order to
validate the classification results within each individual iPhone
13 device as well as across EM radiation data across multiple
iPhone 13 devices, i.e., cross-device portability of the model
with the similar versions of smartphones. The outcomes of this
experiment are illustrated in the final three columns of Table 3
under a heading Transfer learning in Sayakkara et al.’s EM-
SCA approach. The results highlight a significant improvement
over direct pre-trained model learning on similar types of other
devices. Despite the fact that the increment value varies, the
improvement percentage is very high approximately between
60% - 75%.

Multiple samples from each iPhone 6S, 13, and 14 Pro were
acquired in order to further evaluate the results. After creating
customised models using the newly collected trace datasets for
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Table 5: The layout of the current machine learning model employing the newly
obtained dataset from Nordic Semiconductor

Layer (type) Output Shape No. of Parameters
dense (Dense) (None, 1400) 2,868,600

dense_1 (Dense) (None, 800) 1,120,800

dense_2 (Dense) (None, 500) 400,500

dense_3 (Dense) (None, 200) 100,200

dense_4 (Dense) (None, 100) 20,100

dense_5 (Dense) (None, 8) 808

all the devices — iPhone 6S, iPhone 13, and iPhone 14 Pro —
these models were used to verify the accuracy and training time
while implementing the cross-model testing by using the direct
models and transfer learning. Additionally, transfer learning
was applied on all three versions of the trace datasets that were
gathered while training the output layer to verify accuracy when
doing cross-device, cross-model experiments on similar smart-
phone versions. The outcomes of the cross-model validations of
the iPhone 6S, 13, and 14 Pro are displayed in Table 6, Table 7,
and Table 8 respectively.

4.2. IoT Experiment
Two identical Nordic Semiconductor nRF52-DK devices,

named as Nordic-1 and Nordic-2, were used to validate the
cross-model, cross-device investigation of IoT devices, follow-
ing the same procedure as the iPhone experiments. Eight dif-
ferent EM traces were captured at the 2.4 GHz system clock
frequency of the nRF52-DK. Three sets of samples were ob-
tained from each device, and the current EM-SCA model was
used to create a tailored model for each sample of each device,
as shown in Table 5. This table illustrates the exact model that
was used for the iPhone experiment, with the exception of the
output layer, which is dependent on the number of activities
running on the specific device. Additionally, the testing accu-
racy of the Sayakkara et al.’s EM-SCA model using MLP ex-
ecuted for 30 iterations in order to validate the model for each
sample is shown in Figure 12.

Additionally, the nRF52-DK devices were used across dif-
ferent models and devices, in a similar fashion to the iPhone
experiment. This approach aimed to evaluate the IoT device’s
performance by directly applying the model from one device
to another and employing transfer learning techniques. Table 9
displays the findings of the direct application of the model on
other set of samples and the transfer learning application by
training only the last layer of the pre-trained model.

As expected, the accuracy of the Nordic Semiconductor sam-
ples was extremely low during the cross-model, cross-device
experiment, but it significantly improved after using the trans-
fer learning technique by training the output layer to the cross-
models as shown in Figure 13.

5. Discussion and Future Direction

In a controlled environment, the EM acquisition process al-
lows us to observe radiation without effects from external noise
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Figure 12: The individual dataset along with the EM traces for eight distinct
activities for both Nordic Semiconductors are described on the x-axis, which
illustrates the testing accuracy in y-axis while using the MLP machine learning
model.
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Figure 13: The accuracy of the same set of EM signals for the different nRF52-
DK devices was compared using the direct machine learning model of the EM-
SCA approach and the transfer learning technique.

sources. However, real-world scenarios of digital investigations
involve varying circumstances in the environment. Therefore,
we have opted to capture EM radiation from devices in random
locations in this study.

Noise cancellation of the raw electromagnetic (EM) traces
serves as a viable strategy to enhance accuracy during the pro-
cess of transfer learning for cross-device implementations. EM
emissions generated by electronic devices often include un-
wanted background noise that can distort the integrity of the
signal. This noise can arise from various sources such as elec-
tromagnetic interference, signal coupling, and environmental
factors. By applying noise cancellation techniques, such as
adaptive filtering or signal processing algorithms to the raw EM
traces, it becomes possible to isolate the desired signal from the
noise. In the context of transfer learning, where a model learns
from one device and applies its knowledge to another, having
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accurate and consistent data is crucial.

The significance of noise cancellation lies in its ability to en-
hance the fidelity of the data used for training and validation.
When the training data is cleaner and more representative of
the true device behaviour, the resulting model is more likely to
generalise well to other devices. This is particularly important
for cross-device implementations, where the goal is to trans-
fer the learned knowledge from one device to another. Overall,
by employing noise cancellation techniques to refine the raw
EM traces, the accuracy of transfer learning on cross-device
implementations can notably be improved. This leads to more
reliable and effective models that can successfully adapt knowl-
edge across different devices, contributing to the advancement
of digital forensics and related fields, e.g., security and device
analysis.

In addition to noise cancellation, there are several other trans-
fer learning techniques that can be employed to enhance the ac-
curacy of cross-device implementations. One notable approach
involves modifying the architecture of the machine learning
model during the transfer learning process. Another technique
is training only the input layer while keeping the rest of the lay-
ers frozen. This can be particularly effective when the lower-
level features learned by the model are relevant to the new
device’s data. By retaining the pre-trained knowledge in the
deeper layers and fine-tuning only the input layer, the model
can quickly adapt to the characteristics of the new device’s data,
leading to improved accuracy.

Alternatively, freezing either the top or bottom part of the
layers while fine-tuning the other part is another powerful tech-
nique. When the lower layers are kept frozen, the model re-
tains the foundational features learned from the original device,
while adapting its higher-level features to the new characteris-
tics of the device. On the other hand, freezing the top layers pre-
serves the abstract features learned from the original data, and
fine-tuning the lower layers tailors the model to the specifics of
the new device’s data. This approach strikes a balance between
reusing general features and accommodating device-specific el-
ements.

These transfer learning techniques capitalise on the exist-
ing knowledge within a pre-trained model while enabling it to
adapt to new data sources. This adaptability is particularly valu-
able when dealing with cross-device implementations, where
data distribution and characteristics might vary significantly be-
tween devices. By incorporating these techniques, the accu-
racy can be significantly boosted, thereby facilitating effective
knowledge transfer across different devices and ultimately en-
hancing the utility of the model in various applications such as
classification, detection, and analysis.

In real-world use cases, a necessity to transfer a trained
model using the data from a suspect device does not arise. In-
stead, transfer learning can be employed to generalise a model
to a large number of similar devices with time. By doing so, the
model becomes generalised enough to analyse a newly encoun-
tered device without the need for retraining using its specific
data.

6. Conclusion

This study unveils the challenge of reusing ML models to
acquire forensic insights from smart devices, i.e. lack of cross-
device portability. Initially, training a model directly using data
from one device and testing it with data from another device
yielded suboptimal outcomes. Subsequent attempts with train-
ing models using mixed data from multiple similar devices also
proved unsuccessful, highlighting the challenges involved in es-
tablishing a cohesive model across varied data sources.

Under these circumstances, the use of transfer learning
strategies proved to be a crucial turning point. In particular, the
adaptability of the model and performance were considerably
increased by merely training the output layer. This innovation
was especially noticeable in situations where various samples
came from the same devices as well as identical devices. It em-
phasises the necessity of adaptable strategies that take into ac-
count the distinctive qualities of multiple devices while utilising
transfer learning to close the gap between them. The effective
use of the transfer learning technique demonstrates its poten-
tial to revolutionise EM-SCA model portability and knowledge
transfer, paving the way for more precise and effective digital
forensic investigations.

Despite its promise for forensic and analytical purposes, EM-
SCA with transfer learning remains a complex and evolving
challenge, requiring careful consideration and validation. Nev-
ertheless, transfer learning emerges as a promising approach to
advance digital forensic investigations on smart devices using
EM traces. This method enhances accuracy, optimises resource
utilisation, adapts to device diversity, addresses data scarcity,
and enables real-time analysis by leveraging knowledge from
specific or similar types of devices. As digital threats evolve,
transfer learning becomes a valuable tool for forensic experts in
uncovering digital evidence and securing digital environments
from smart devices through EM-SCA.

Appendix

The aggregate results of the various samples performed to
compare the cross-model and cross-device implementation be-
tween the iPhone 6S, 13, and 14 Pro are presented Tables 6,
7, and 8 respectively. Additionally, the results of the Nordic
Semiconductor nRF52-DK are presented in Table 9.
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Table 6: Employing empirical analysis of various samples taken at different times from the iPhone 6S to determine the testing accuracy. The samples were assessed
using two methods: direct application of the present model to newly collected samples without training (referred to as "Direct"), and application of transfer learning
of the existing model (referred to as "Transfer").

Device Name (dataset) Training Mode Model Name
iPhone6S-I-Sample1 iPhone6S-I-Sample2 iPhone6S-I-Sample3

iPhone6S-I-Sample1 Direct 0.9961 0.1214 0.1058
Transfer - 0.5166 0.3624

iPhone6S-I-Sample2 Direct 0.1877 0.9982 0.1224
Transfer 0.4795 - 0.3753

iPhone6S-I-Sample3 Direct 0.1011 0.1186 0.9965
Transfer 0.5803 0.6069 -

Table 7: Employing empirical analysis of various samples taken at different times from the iPhone 13 to determine the testing accuracy. The samples were assessed
using two methods: direct application of the present model to newly collected samples without training (referred to as "Direct"), and application of transfer learning
of the existing model (referred to as "Transfer").

Device Name (dataset) Training
Mode

Model Name

iPhone13-
I-Sample1

iPhone13-
I-Sample2

iPhone13-
I-Sample3

iPhone13-
I-Sample4

iPhone13-
I-Sample5

iPhone13-
I-Sample6

iPhone13-
II

iPhone13-
III

iPhone13-I-Sample1 Direct 0.9998 0.0690 0.0131 0.0978 0.1334 0.2507 0.0818 0.1001
Transfer - 0.8458 0.7429 0.8223 0.7809 0.8255 0.8092 0.7400

iPhone13-I-Sample2 Direct 0.1391 0.9999 0.0923 0.1957 0.1931 0.1491 0.2102 0.1000
Transfer 0.8370 - 0.6899 0.8116 0.8068 0.7863 0.8509 0.6868

iPhone13-I-Sample3 Direct 0.0943 0.2478 0.9990 0.0035 0.3220 0.1212 0.0412 0.0997
Transfer 0.8909 0.8527 - 0.8781 0.9028 0.8517 0.9008 0.7418

iPhone13-I-Sample4 Direct 0.1892 0.0968 0.0000 0.9997 0.0042 0.0597 0.1796 0.0308
Transfer 0.9262 0.9177 0.8158 - 0.8771 0.8792 0.9334 0.9194
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iPhone13-II Direct 0.0612 0.1540 0.0291 0.1997 0.0708 0.1375 0.9996 0.0997
Transfer 0.9572 0.9858 0.8813 0.9808 0.9601 0.9488 - 0.9024

iPhone13-III Direct 0.1927 0.1179 0.1041 0.0884 0.1002 0.0989 0.1139 0.9991
Transfer 0.7409 0.7743 0.6533 0.7625 0.7086 0.6916 0.7784 -

Table 8: Employing empirical analysis of various samples taken at different times from the iPhone 14 Pro to determine the testing accuracy. The samples were
assessed using two methods: direct application of the present model to newly collected samples without training (referred to as "Direct"), and application of transfer
learning of the existing model (referred to as "Transfer").

Device Name (dataset) Training Mode Model Name
iPhone14Pro-I-
Sample1

iPhone14Pro-I-
Sample2

iPhone14Pro-I-
Sample3

iPhone14Pro-I-
Sample4

iPhone14pro-I-
Sample5

iPhone14Pro-I-Sample1 Direct 0.9962 0.1108 0.1046 0.0916 0.0999
Transfer - 0.4279 0.2965 0.3521 0.3239

iPhone14Pro-I-Sample2 Direct 0.1248 0.9975 0.0969 0.0756 0.1000
Transfer 0.4164 - 0.2967 0.3608 0.3109

iPhone14Pro-I-Sample3 Direct 0.1100 0.0904 0.9942 0.1049 0.1000
Transfer 0.1941 0.2065 - 0.2118 0.1796

iPhone14Pro-I-Sample4 Direct 0.1013 0.1049 0.1027 0.9927 0.1000
Transfer 0.2499 0.2521 0.2272 - 0.1642

iPhone14Pro-I-Sample5 Direct 0.0873 0.0836 0.0962 0.1036 0.9990
Transfer 0.6161 0.6336 0.4801 0.4868 -
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Table 9: Employing empirical analysis of various samples taken at different times from the Nordic Semiconductor to determine the testing accuracy. The samples
were assessed using two methods: direct application of the present model to newly collected samples without training (referred to as "Direct"), and application of
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