
Facilitating Electromagnetic Side-Channel Analysis for
IoT Investigation: Evaluating the EMvidence Framework

Asanka Sayakkara, Nhien-An Le-Khac, Mark Scanlon

Forensics and Security Research Group, University College Dublin, Ireland

Abstract

The Internet of Things (IoT) has opened up new opportunities for digital forensics by providing new sources of evidence. How-
ever, acquiring data from IoT is not a straightforward task for multiple reasons including the diversity of manufacturers, the lack
of standard interfaces, the use of light-weight data encryption, e.g. elliptic curve cryptography (ECC), etc. Electromagnetic side-
channel analysis (EM-SCA) has been proposed as a new approach to acquire forensically useful data from IoT devices. However,
performing successful EM-SCA attacks on IoT devices requires domain knowledge and specialised equipment that are not available
to most digital forensic investigators.

This work presents the methodology behind and an evaluation of a framework, EMvidence, that enables forensic investigators to
acquire evidence from IoT devices through EM-SCA. This framework helps to automate and perform electromagnetic side-channel
evidence collection for forensic purposes. An evaluation of the framework is performed by applying it to multiple realistic digital
investigation scenarios. In the case of attacking ECC cryptographic operations, the evaluation demonstrates that the volume of EM
data that needs to be stored and processed can be significantly reduced using the framework’s machine learning based approach.
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1. Introduction

Digital forensics involves data acquisition from digital de-
vices in order to help progress corporate, civil and legal inves-
tigations. Traditionally, digital forensic investigators deal with
personal computers or mobile devices as the principal digital
evidence sources [1]. However, the emergence of the Internet of
Things (IoT) has revolutionised the potential for digital foren-
sics by opening up new sources of evidence [2]. For example,
wearable fitness tracker data can enable the precise reconstruc-
tion of a person’s movements. Similarly, smart home data can
reveal the exact time a person entered or left a premises.

While IoT devices can provide invaluable data for digital
investigations, acquisition of data from IoT devices is not a
straightforward task. An IoT device is a special purpose de-
vice designed to perform a specific task. Several manufacturers
produce these devices often with bespoke hardware and soft-
ware designs. As a result, IoT devices lack standard inter-
faces and forensic acquisition methods. This can often result
in a device requiring a memory chip-off procedure in order to
access its data [3]. However, with the increasing application
of lightweight cryptographic algorithms in IoT devices, such
physical access into a device may not be a viable way to ac-
quire forensic data [4].
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All running electronic devices emit electromagnetic (EM)
noise in various frequencies. This is due to the time-varying
electrical currents that are used. Similarly, running computers
and mobile devices are sources of strong EM noise. CPUs are
considered to be one of the strongest EM noise sources in com-
puting due to fast clock pulses used on them. The pattern of
electrical pulses sent through the CPU of a computer depends
on the software instructions being executed and data being han-
dled. Consequently, CPU EM emissions has been shown to leak
information about both software activities and data [5].

EM side-channel analysis (EM-SCA) is a branch in infor-
mation security, which eavesdrops on these EM emissions [6].
EM-SCA techniques have been used for various purposes in-
cluding software behaviour detection, software modification
detection, malicious software identification, and data extrac-
tion. Among different data that can be extracted through EM-
SCA techniques, cryptographic keys are of significant forensic
interest. Various techniques have been developed for this pur-
pose including simple electromagnetic analysis (SEMA), differ-
ential electromagnetic analysis (DEMA) and correlation elec-
tromagnetic analysis (CEMA).

The possibility of applying EM-SCA in digital forensic in-
vestigation scenarios involving IoT devices has been recently
proposed [7]. When it is difficult or impossible to acquire foren-
sic evidence from an IoT device, observing EM emissions of
the device can provide valuable information to an investigator.
Clues taken through EM-SCA may not be directly considered
as court-admissible digital evidence, they can still provide use-
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ful insights for an investigator to find court-admissible evidence
elsewhere. However, EM-SCA requires specialised equipment
and technical expertise that many digital forensic investigators
may lack, which poses a considerable barrier to its adoption.

This work addresses the challenge of making EM-SCA a
practical reality to digital forensic investigators by outlining and
evaluating a software framework called EMvidence. A prelimi-
nary, proof-of-concept of the framework is outlined in [8]. This
work focuses on evaluating the EMvidence framework under
multiple application scenarios. The framework is designed to
facilitate extensiblity through an EM processing plug-in model.
Digital investigators can enable and use such extended capabil-
ities in practical cases, making a sustainable ecosystem.

Contributions of this work:
• Presentation of a methodology to extract forensically use-

ful insights from IoT devices through EM-SCA.
• Demonstration and evaluation of multiple IoT device in-

vestigation scenarios where an investigator can benefit by
applying EM-SCA methodology.
• Outline of an investigator-friendly open source software

framework that incorporates EM side-channel analysis ca-
pability for digital forensic purposes.
• Implementation and evaluation of a methodology to auto-

matically separate EM traces of elliptic curve cryptogra-
phy (ECC) being performed on IoT devices, thus saving
the storage space required to store raw EM traces.

2. Background

2.1. Related Work

Analysis of unintentional EM radiation has been identified
as a method to eavesdrop on electrical and electronic devices
for decades [7]. It has been demonstrated that cathode ray tube
(CRT) computer displays leak sufficient amount of information
to reconstruct the content being displayed through their EM ra-
diation [9]. With the availability of off-the-shelf hardware ca-
pable of capturing weak EM signals and computers with suffi-
cient processing power to analyse data, EM side-channel anal-
ysis on all kinds of computing devices became more viable. As
a result, a multitude of research has been conducted on various
EM-SCA techniques including software anomaly detection and
cryptographic key recovery [7].

Kocher et al. showed that power consumption of a computing
device can be used as a side-channel to extract cryptographic
keys [6, 10]. When a CPU performs cryptographic operations,
each value assigned to its registers gets reflected in the power
consumption. By collecting a sufficient number of power con-
sumption traces during cryptographic operations with the same
key, it is possible to reveal the key using algorithms such as dif-
ferential power analysis (DPA). Power consumption of the CPU
is directly associated with EM radiation of the device, which
opens up the EM side-channel. Therefore, variants of power
analysis algorithms, such as DEMA, were introduced later in
order to recover cryptographic keys using EM traces [11, 12].
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Figure 1: Leakage signals of two representative IoT devices - (a) Raspberry Pi
3 B+ at 1.4GHz and (b) Arduino Leonardo at 288MHz (18th harmonic).

In addition to the information security aspects of EM-SCA
techniques, digital forensics is another field that can benefit
from EM-SCA techniques. Souvignet and Frinken suggested
that power analysis attacks can be used to extract data from
smart-cards used by malicious skimmer devices as a method to
identify victims in a forensic investigation [13]. However, it
requires physically tapping into the device being investigated
leading to potential tampering of evidences. In contrast, EM-
SCA techniques can be more suitable for digital evidence ac-
quisition as it does not require any physical alterations to the
device being investigated [14]. However, cryptographic key re-
covery is still a challenging task with EM-SCA due to the fact
that EM traces has to be acquired with precise alignment, which
requires physical instrumentation of the device [15].

Carrying out EM-SCA attacks require precise acquisition
and analysis of EM traces. In order to ease the job of informa-
tion system security professionals to assess side-channel vul-
nerabilities of embedded systems, it is necessary to have tools.
ChipWhisperer [16, 17] is a widely used tool among secu-
rity professionals and academic researchers to perform crypto-
graphic key recovery attacks. It consists of a collection of open-
source trace acquisition hardware and data analysis software
components. Similarly, Riscure Inspector [18] is a fully fledged
commercial product that comes with software and hardware
components to perform various power and EM side-channel at-
tacks to embedded devices including smart-cards. While these
tools are focused on information security objectives, we opti-
mise the EMvidence framework for the specific needs of digital
forensic use cases.

2.2. Observation of Electromagnetic Side-Channels

EM waves can be generated from electrical and electronic
systems without the intention of the designers when conductors
in a circuit accidentally behave as antennas [19, 20]. Electronic
circuits that perform high-speed switching operations are espe-
cially susceptible to generating unintentional EM noise due to
their higher frequencies. Among them, digital electronic com-
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ponents used on computers are well known sources of EM noise
since they employ high-speed clocks to carry out their internal
operations [5]. CPU, memory chips, data and address bus lines,
various ports such as USB and Ethernet are examples of EM
radiation sources on a typical computer system. Among these,
EM radiation from the CPU is well known to leak information
about the internal activities of the CPU including data being
handled [15].

When performing an EM-SCA attack, the information about
internal operations of the device being attacked are modulated
into the emission signal in various ways. This exact method of
leaking data through an EM side-channel is called the leakage
model. It is necessary to assume a specific leakage model when
performing an EM-SCA. From the inception of side-channel
cryptographic key recovery attacks, the major leakage model
that has been explored is Hamming weight leakage model. In
multiple works by Kocher et al., it has been shown that the
Hamming weight of the data being handled by a CPU gets mod-
ulated into the side-channel - hence the name of the leakage
model [6, 10]. Another closely associated model that often gets
considered is the Hamming distance leakage model where the
number of bits that gets flipped is assumed to be modulated into
the EM radiation [21]. Further improvements have even lead to
the modelling of the exact bit transitions, which can be either
0→ 1 or 1→ 0, called switching distance leakage model [22].

Aleak t = αHW(Pt ⊕ Kt) + ηt (1)

Fobserve = Fclock ± Fleak (2)

When attacking a cryptographic algorithm with the intention
of retrieving the encryption key under Hamming weight model,
it is assumed that in a specific point in the execution of the al-
gorithm, the Hamming weight of the cryptographic key bits are
exposed [23]. For example, consider a simple cipher where a
plaintext, P, is associated with a key, K, through XOR operations
to generate the ciphertext. The amplitude of the information
leaking EM signal Aleak t can be modelled with the Hamming
weight leakage model as shown the Equation (1). HW is the
Hamming weight function while Pt and Kt are the plaintext and
key bytes XOR-ed at the time instance t. α is a positive integer
used as a scaling factor while ηt is the noise at time t. When a
signal gets modulated with a carrier wave such as CPU clock
or on-board radio transmitter signal through the amplitude, it
causes side-bands to occur between the carrier wave [24]. For
example, consider the clock frequency of a CPU to be Fclock and
the frequency of the leakage signal to be Fleak. This causes the
observation of a frequency bandwidth Fobserve that spans from
(Fclock−Fleak) to (Fclock+Fleak) as illustrated in the Equation (2).

Observation of unintentional EM emissions from computing
devices can be made using traditional signal analysis hardware,
such as oscilloscopes and spectrum analysers. As an alternative,
software defined radios (SDR) where fast analogue-to-digital
converters (ADC) are used to digitise EM signals and feed into
software for processing and visualisation. Compared to the tra-
ditional options, SDRs provide more flexibility and ease of use
to non-signal analysis professionals. Figure 1 illustrates the
EM signals observed at clock frequencies of two representa-
tive IoT devices using an SDR device setup, i.e., a Raspberry Pi
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Figure 2: The three phases of EMvidence framework usage.

(1.4GHz CPU) and an Arduino Leonardo (running at 16MHz).
In both cases, an H-loop antenna is placed slightly above the
processor chip of the devices. The antenna is connected to a
HackRF SDR device [25] that is finally connected to a host
computer running GNURadio software library [26] to process
data. The frequency region of the Arduino was too noisy to
observe directly. Therefore, it was empirically identified that
the 18th harmonic of the clock frequency, i.e., 288MHz, is most
appropriate to observe EM emissions of the Arduino device.

3. EMvidence Forensic Framework

This section presents the design and functionality of the
EMvidence software framework for EM-SCA for digital foren-
sic purposes. The key principle behind the design of EMvi-
dence framework is to make it easy to use for digital forensic in-
vestigators who are generally non-experts of EM-SCA. Further-
more, due to the rapid changes that occur in IoT device ecosys-
tem, it is intended to make the framework easily extendable by
third parties - especially with new ML models to support new
IoT devices and new information gathering.

3.1. High-level Architecture

In order to gather forensically useful information using EM-
SCA techniques, a software tool should facilitate three main
phases. The first is the training/research phase where IoT de-
vices and their forensically useful software activities are pro-
filed and added into the framework. Once the framework with
such analysis capability is ready, it can be used in the second
phased called the field investigation phase. There, an investi-
gator can collect EM data from a suspect IoT device, referred
to as “device under test” (DUT), in a real-world scenario and
gather insights about the device on-the-spot. The third phase is
further analysis where the device is taken into a forensic lab-
oratory and used to perform advanced EM-SCA methods such
as cryptographic key recovery attacks. Figure 2 illustrates these
three phases of EM-SCA based digital forensics.
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EMvidence framework consists of a main core with multiple
default modules and facility to add third-party plug-ins depend-
ing on future requirements. Main component of EMvidence
is its core GUI that provides the default interface to a user. It
also manages the modules and plug-ins by establishing com-
munication between them in a coordinated fashion. Together
with core GUI, the framework comes with three default soft-
ware modules that are essential to the normal operations of the
framework namely, data acquisition module, data visualisation
module, and report generation module. Furthermore, depend-
ing on the requirements, third-party users can develop and add
plug-ins to the core GUI of the EMvidence framework. Such
plug-ins may provide various data analysis capabilities such as
software behaviour detection, cryptographic key recovery, etc.
The source code of the EMvidence framework and it’s associ-
ated plug-ins are available at a Github repository1.

3.2. Data Acquisition Module

This module facilitates the acquisition of EM data for anal-
ysis. For this purpose, a SDR device needs to be connected
to the host computer where the EMvidence framework is run-
ning. Since the framework makes use of GNURadio software
library [26] to handle SDR interfaces, any SDR device sup-
ported by GNURadio can be used. This module supports two
types of data acquisition methods. Firstly, observation of EM
emission signal can be made for a predefined period of time
without any interaction or communication with the DUT from
few centimetres away from it. This is the approach used in a
digital forensic investigation scenario. Secondly, EM signals
can be acquired while actively interacting with the DUT in sce-
narios where it is safe to communicate with the device through
an interface such as universal serial bus (USB), universal asyn-
chronous receiver/transmitter (UART), or Ethernet.

While interactive EM data acquisition can be used to profile
a new type of IoT, it requires precise coordination between the
SDR, DUT, and the host computer. Consider a scenario where
it is required to build a ML model to detect a specific piece of
software code running on an IoT processor/microcontroller. As

1https://github.com/asanka-code/EMvidence

the training samples for ML, individual EM traces are needed
– each representing the exact time period where particular soft-
ware is executed. EMvidence provides functionality to send
commands to the target device to start and stop performing a
particular task through USB or UART interfaces. Users can
program target devices to run associated programs upon receiv-
ing these commands. With this setup, EMvidence can com-
mand the target device to start the required software operation
and start saving EM data from the SDR device. Once EMvi-
dence receives feedback that software operation is complete, it
immediately ceases data acquisition. By repeating this process,
a large number of EM trace files can be acquired representing a
specific software behaviour on the target device. Figure 3 illus-
trates the acquisition of EM traces in a coordinated fashion from
a target device. Once such data are used to build ML models,
they can be incorporated into EMvidence framework to inspect
similar IoT devices in investigative scenarios.

3.3. Data Visualisation Module

In the simplest form, an EM signal can be visualised as a time
domain signal; where the x-axis represents time and the y-axis
represents amplitude. In order to see the individual frequency
components of a signal, it can be converted to the frequency
domain using Fast Fourier Transform (FFT). Furthermore, FFT
can be applied in short time intervals, i.e., Short-Time Fourier
Transform (STFT), to generate a spectrogram – a graph where
the x-axis represents observation time and the y-axis represents
the frequency. The colour codes are used within a spectrogram
to represent the amplitude of the signal at a particular time in-
stance in a particular frequency.

There are two methods for EM data visualisation. The first
is reading data from the SDR device and real-time visualisation
thereof. This approach is useful for visually identifying the fre-
quencies where information leakages occur from the DUT. A
spectrogram is generally used to observe such suspicious EM
signals for information leaking patterns. The second method is
visualising EM data taken from saved files. Such off-line EM
data visualisations are useful for EM traces acquired outside
of EMvidence. Users can interpret such an externally-captured
EM trace file by observing it visually with EMvidence. An FFT
can be used in this scenario (see Figure 4).

3.4. Third-Party Plug-ins

The IoT ecosystem is highly dynamic in nature. New IoT
devices enter into the market continuously while existing IoT
devices can change frequently due to software updates. Further-
more, various novel EM-SCA analysis techniques are released
time to time that can be used to inspect IoT devices. Keep-
ing up with these changes is not an easy task for any digital
forensic investigation tool. This is where the necessity arises
to support development of third-party plug-ins to the software
tool depending on user requirements. When a large community
of users continuously develop and provide new plug-ins to the
platform, it can keep up with the dynamic IoT ecosystem.

EMvidence plug-ins enable extra functionality to analyse
EM data. EMvidence provides an application programming in-
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terface (API) for plug-ins to take services from the core frame-
work, such as providing access to real-time EM signal samples
or saved EM trace files. Furthermore, a plug-in can provide
information back to the core framework. Consider a situation
where a user develops a new ML model to recognise a partic-
ular software activity running on a specific IoT device. This
trained model can be easily integrated into EMvidence by wrap-
ping it with API calls to the framework. Once developed, such
plug-ins can be either distributed and used among the users of
EMvidence framework or submitted to the source code reposi-
tory of the framework in order to be distributed officially. When
an investigator enables this particular plug-in during an investi-
gation, EMvidence delivers EM signal data to the plug-in, lets
the investigator interact with it, and receive ML classification
results back.

4. Evaluation

The goal of this section is to evaluate the potential of using
EMvidence framework in multiple practical aspects of informa-
tion gathering from IoT devices. IoT devices that are in wide
use in day-to-day life comes in all shapes and sizes. While each
IoT device can consist of a unique combination of hardware and
software, they can broadly be categorised into two classes based
on their computing resources as low-end and high-end IoT de-
vices. The design choice of choosing computing hardware re-
sources to be included in an IoT device depends on multiple
reasons. Among them, source of power is an important fac-
tor. A device that can be continuously mains powered can have
more powerful hardware, and therefore, can be considered as a
high-end IoT device. Meanwhile, a device that has to rely on a
battery for a prolonged period of time needs to use an energy ef-
ficient processor such as micro-controllers or system-on-chips
(SoC). Hence, such devices can be considered as low-end IoT
devices and include health implants, fitness wearable devices,
and smart light bulbs. Due to limited on-board storage, these
devices generally do not store much data. They tend to either
transmit data into an associated smart-phone app or hub, or di-
rectly to a cloud service. Therefore, even if a low-end IoT de-
vice contains some non-volatile data storage, e.g., an SD card, it
is less likely that traditional digital evidence extraction methods
would prove fruitful.

Meffert et al. highlighted the need for identifying the running
forensic state of IoT devices in an investigation [27]. A foren-
sic state is the state of hardware and software of an IoT device
at the time it was seized by law enforcement. For example, an
IoT smart lock can have two states, i.e., locked and unlocked,
and its state could be a vital information in an investigation.
Furthermore, IoT devices that are subject to investigation may
have been tampered with intentionally or as a result of malware.
Ronen et al. demonstrated that IoT smart bulbs can be infected
over-the-air (OTA) and be controlled remotely [28]. Such ma-
liciously modified devices are shown to be effective in causing
harmful results to humans, such as creating epileptic seizures to
vulnerable individuals by adjusting the frequency of LED smart
bulbs [29]. Therefore, verifying whether the device is running
its default firmware can useful. In case the device has been

reprogrammed and protected with encryption, identifying the
encryption algorithm is also forensically useful.

4.1. Processing Electromagnetic Trace Data

EM-SCA attacks require a sufficient number of target device
EM traces. Furthermore, in order to train ML models using EM
traces, it is necessary to have EM trace samples annotated with
the specific software activities of the target device they repre-
sent. Three hardware components are necessary for the acquisi-
tion of EM traces. These are namely; a DUT, a signal capturing
device, and a host computer. The signal capturing device is con-
nected to the host computer via USB interface while the DUT
may or may not be connected in a similar manner. The host
computer runs EMvidence framework and stores the captured
EM traces for analysis.

An EM trace is a vector that represents the amplitude vari-
ation of a signal over time. Due to fast sampling rates used
by signal acquisition hardware, an EM trace with a duration of
milliseconds can contain millions of data points. When these
data are used directly as input to train and test machine learn-
ing and deep learning models, the highly dimensional data can
negatively affect time and amount of computing resources they
demand. As a result, EM traces acquired through the afore-
mentioned hardware setup are not suitable to be directly used
to train DL models. Therefore, EM traces are pre-processed
in order to transform them from a continuous time domain
signal into a format that has a manageable feature vector for
DL. LSTM architecture was used for the deep neural network,
which is suitable for the identification of patterns that occur in
time series data, such as EM traces [30].

When attempting to classify software activity EM traces, la-
belled EM traces are needed. For this purpose, EM trace sam-
ples are acquired by running each software activity on the target
device and collecting EM traces of a predefined length. Orig-
inally, each EM trace is in time domain. Time-domain signals
are prone to fluctuations caused by external noise. Therefore,
each trace is transferred to frequency domain using FFT with an
overlapping sliding window. For each EM trace, this results in
a collection of FFT vectors representing consecutive time steps.
The dimensions of the FFT vectors are still considerably higher
to be directly used as the feature vector for LSTM classifier,
e.g., 200, 000 dimensions. Therefore, the dimensions of these
FFT vectors are further reduced by dividing the elements of
each FFT vector into 1, 000 equally spaced buckets. From each
bucket, the maximum element is selected as the representative
of the bucket without losing the generalisation. This results in
a 1, 000 element long feature vector for each time step of EM
traces.

4.2. Forensic State Detection

In order to illustrate the usefulness of detecting forensic state
of low-end IoT devices through EM-SCA, the following hy-
pothetical scenario was considered. An IoT device has been
deployed in a building as a part of an intruder detection sys-
tem. The device consists of a sensor that detects movements
within a specified space of the premises. The device consists
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Figure 4: Power Spectral Density (PSD) of the IoT device’s EM signals.

of two actuators, an alarm and a door lock, that it can control
independently. Furthermore, the device is connected to a GSM
module in order to send and receive SMS. The device firmware
is programmed to continuously read the motion sensor to detect
intrusions into the premises. Upon detection, it can perform one
of three tasks – locking the door, firing an alarm, or sending a
text message to the owner. At any time, the device can be dis-
abled by pressing a physical button that puts the device into an
idle state. The device does not have any other associated net-
work servers that can log device states. Furthermore, the device
does not switch internal states due to any other reason than the
specified ones. The five states of the device that we are inter-
ested in are namely; (1) idle, (2) read digital sensor (reading
motion sensor), (3) control digital actuator (firing the alarm),
(4) control analogue actuator (turning door lock), and (5) serial
communication (sending text message).

Suppose that this building is subject to a legal investigation
for a crime - assumed to be conducted by an intruder. Upon the
arrival of law enforcement, one of the investigative questions is
whether the intruder detection system functioned as expected or
did an insider disable it before the crime occurred. The answer
to this question can be found if the current internal state of the
device is known. Turning the device off and moving it to a digi-
tal forensics laboratory destroys the current internal state of the
device. Performing a live EM-SCA on the intrusion detection
device and identifying its current software state may be the only
viable approach to resolve this problem.

The IoT device was emulated by using an Arduino Leonardo
device. It was programmed to run a software code that puts the
device on each of the 5 states chosen by the user. While the
device was running on each state, a 30-second long EM trace
was captured per state with a sampling rate of 20MHz using
HackRF SDR. The SDR was tuned into the 18th harmonic of
the Arduino’s clock frequency, i.e., 288Mz. The H-loop an-
tenna of the SDR was placed over the processor of the device
during data acquisition. Figure 4 illustrates the power spectral
density (PSD) of the EM signals from IoT device in its different
states. A neural network classifier based on multi-layer percep-
tron (MLP) architecture was selected to distinguish each state
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Figure 5: Confusion Matrix of the IoT Device State Classifier.

of the IoT device. A non-overlapping sliding window with a
width of 250ms was used to extract EM trace segments; sub-
sequently converted to the frequency domain. These windows
were grouped and averaged to produce a vector of 1, 000 fea-
tures that were considered as training and testing samples for
the ML classifier.

Figure 5 illustrates the confusion matrix of the classification
results. The classifier was able to achieve an average F1-score
of 99% in distinguishing the 5 IoT device states. This indicates
that a pre-trained model to identify internal software states of
the IoT device. For example, if it was identified that the device
is in the idle state at the time investigators arrived at the scene,
it’s clear that someone deliberately turned the device into idle
state in order to stop it from triggering the intruder alarm. In
that case, fingerprints on the button of the IoT device could po-
tentially help to identify the insider. Once the machine learn-
ing classifier was built, it is integrated into the EMvidence as
a third-party machine learning model for identifying internal
state of the particular type of IoT devices.

4.3. Elliptic Curve Detection
Some cryptographic algorithms, e.g., RSA, demand reason-

ably high computational power making them unsuitable for
low-powered computing devices. As a result, elliptic curve
cryptography (ECC) has increasingly been deployed on these
devices. ECC is a public key cryptography that requires a
smaller key length compared to RSA. Numerous different el-
liptic curves can be used in ECC. Table 1 illustrates five major
elliptic curves designed to run on low power devices (available
in the micro-ecc library). These elliptic curves use different pri-
vate and public key lengths with bespoke configuration settings.

Due to the differences in settings of each elliptic curve, the
running time of ECC operations for each curve can vary. Fig-
ure 6 illustrates the average time different elliptic curves take to
digitally sign a message and to verify the signature of a message
(ECDSA). The measurements were calculated by running each
ECDSA algorithm on an Arduino device with equally sized
messages. For each curve, both signing and signature verify-
ing operations take almost the same amount of average time.
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Figure 6: The time it takes to digitally sign and verify a message using different
ECC curves on an Arduino device.

However, the average time taken by individual curves are dis-
tinguishably different from each other.

In order to investigate the possibility of detecting the pres-
ence of ECC cryptography through EM emissions, an experi-
ment was conducted with an LSTM binary classifier. The ob-
jective is to train a model to distinguish between ECC cryp-
tography operations and other software activities. For this pur-
pose, an Arduino device was programmed to perform ECDSA
signing operations that was controlled by sending commands
through USB from the host computer. Each time an ECDSA
signing operation is performed, a 100ms trace was captured
through a H-loop antenna placed over the Arduino’s microcon-
troller chip connected to a HackRF software defined radio.

For each of the five elliptic curves, 50 EM traces were ac-
quired (totalling 250 traces) for the ECC cryptography class.
For non-ECC cryptography operations class, 20 Arduino pro-
grams used that have varying complexities. From each Arduino
program, 12 traces were acquired for non-ECC cryptography
class (totalling 240 traces). A sliding window of 10ms was
used with a 2ms step size (80% overlap) to collect segments
from each trace and subsequently a feature vector for each win-
dow segment was calculated using FFT broken down into 1, 000
equally spaced buckets. Each bucket’s maximum amplitude fre-
quency component was selected as the representative signal for
the bucket. This results in training sequences each having time
steps where each time step consists of 1, 000 features. All the
training samples were normalised to values between 0 and 1.
Figure 7 illustrates examples of signals acquired from a DUT

Curve Private Key (bytes) Public Key (bytes)
secp160r1 21 40
secp192r1 24 48
secp224r1 28 56
secp256r1 32 64
secp256k1 32 64

Table 1: Private and Public Key Sizes of ECC Curves.

while running two curves of ECC and running two non-ECC
programs.

The LSTM classifier was implemented using Keras library
with python. A single LSTM layer consists of 100 nodes and
a fully connected layer with 1 node for binary classification.
This last node uses a sigmoid activation function, while the
model uses binary crossentropy as the loss function. The se-
quence data set was broken into 75% and 25% sets for training
and testing purposes respectively. When using 5 epochs and 64
batch size, the LSTM classifier achieved an impressive 100%
accuracy. In order to assess the effect from the sliding win-
dow length and EM trace length, further LSTM models were
trained and tested varying those parameters. Figure 8 illustrates
the variation of classification accuracy against both sliding win-
dow length and EM trace length. As is evident, the longer the
EM traces, the higher the classification accuracy achieved. This
is due to the fact that longer EM traces results in longer se-
quences with more information for the LSTM model to learn.
In contrast, longer sliding window lengths negatively affected
the classification accuracy, reducing it to 95% in the worst case.
Again, the reason is behind the length of the sequences. Longer
windows result in shorter sequences for a fixed length of EM
traces.

4.4. Automated Trace Segmentation
When an IoT device is employing data encryption, EM-SCA

techniques can assist an investigator to retrieve data decryption
key. However, the success of cryptographic key recovery tech-
niques depends on the number of EM traces acquired by ob-
serving a target device during cryptographic operations. These
EM traces need to be acquired in a manner such that the crypto-
graphic operation being observed must occur at the same point
in time across all the traces. It has been shown that the accu-
racy of key recovery is considerably affected by misalignment
of the EM traces [10]. The most common approach to extract
sufficiently aligned EM traces is by instrumenting the target de-
vice through software or hardware. The purpose of this instru-
mentation is to identify the beginning and ending time where
the cryptographic operation occurs so that the EM observation
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Figure 7: Example ECC and non-ECC Signals Acquired.
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Figure 8: ECC Digitally Signing and Verification Time on an Arduino.

Figure 9: Signal Spectrogram of ECC Digital Signing Two Times.

hardware can be synchronised to extract EM traces within that
precise time period.

Instrumentation of target devices can be used to demonstrate
key recovery attacks, but it is not viable in most real-world ap-
plication scenarios. Such scenarios occur when the attacker has
no physical access to the device being attacked or when im-
plementing such instrumentation is not possible. Under such
circumstances, the EM traces have to be gathered without in-
strumentation and later be processed in order to realign them.
Such post processing is a computationally costly task where the
success of alignment is not sufficiently guaranteed.

When an Arduino device is performing a cryptographic op-
eration, the experimental setup captures the data over a band-
width of 20MHz centred at 288MHz. Figure 9 illustrates the
spectrogram of a signal that was observed while the device was
performing two consecutive ECC digital signature operations.
As can be seen, two distinctive regions across the time dimen-
sion have changed patterns corresponding to the two ECC oper-
ations. However, not all captured bandwidth leaks information
about software activities. It is evident that some channels repre-
sent significant changes in signal amplitude compared to others
in the two interested regions. Figure 10 illustrates two selected
channels from the captured bandwidth where the first channel
clearly represents two unique areas corresponding to two ECC
operations and the second channel represents only a common

region of change in pattern. This means that finding the right
channel can help to identify the precise time instance where a
particular software task has started and ended.

The automated separation of EM traces relevant to ECC op-
erations was performed as follows. The target IoT device, i.e.,
Arduino, was programmed to run an ECC-related triggered by a
command sent through USB. The exact task it excutes is using a
private key generated using curve secp160r1 to digitally sign a
32 byte long arbitrary message. The controlling host computer
sends a command every 5 seconds in order to make the desired
operation occur periodically at fixed intervals. Meanwhile, EM
traces were acquired by observing for a predefined time period
of 30 seconds. For such captured EM traces, a STFT was ap-
plied with a window size of 1ms. Due to the sampling rate
of 20MHz, the STFT operation results in a spectrum dataset
with 20, 000 channels. Finally, one manually selected channel
from the EM data is applied to a change point detection algo-
rithm, The Pruned Exact Linear Time (PELT) [31], in order to
identify time instances where the significant pattern changes oc-
cur. Once the change points of an EM trace were identified, the
trace was broken into it corresponding segments. Finally, a ML
model trained to identify ECC curves was used to distinguish
those EM trace segments with ECC operations. Keeping the
EM segments of ECC operations for future use, such as crypto-
graphic key recovery attacks, the rest are discarded.

4.5. Processing Overhead
High sampling rates are necessary to extract as much CPU

data leakage information as possible. It is necessary to observe
EM signals for a longer time duration in order to gather suffi-
cient traces to attack cryptographic operations. However, on the
down side, these two factors considerably increase the size of
the resultant EM trace files saved on the host computer. A sig-
nificant percentage of such saved data may not contain intended
software activities, wasting storage space and processing time.
As a result, it is useful to process EM signals in real-time and
save traces only when activity of interest is detected.

The overhead of processing EM signals in real-time is eval-
uated as follows. While EM signal capture device is set to
20MHz sampling rate, a sliding window with a fixed width
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Figure 10: Two Arduino EM Channels when Digitally Signing with ECC.
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Figure 11: Effect of the Sliding Window Step Size to the Data Collection Buffer
over 10ms.

of 10ms was used to slide through the real-time I-Q data feed.
Each data window was then preprocessed in real-time to gener-
ate the features and fed to a neural network-based binary clas-
sifier to detect the presence of ECC cryptography operations.
The step size of the sliding window, i.e., the amount of overlap
between consecutive windows, was varied between 0.5ms and
10ms for different independent trials. In all experiments, the
total signal capturing duration was fixed to 10 seconds.

In Figure 11, the graph on the top illustrates the number of
windows produced against the sliding window step size. When
reducing step size, the number of windows available to process
for a given time period increases exponentially. The graph at
the bottom of Figure 11 illustrates the statistics of the number
of data samples waiting in the real-time buffer until the sliding
window had processed them. As it can be seen, the median
length of the I-Q signal buffer does not indicate any noticeable
increase even for the smallest sliding window step size consid-
ered. This means, even though the number of sliding windows
to process increases with the reduction of sliding window step
size, it seems not to incur any considerable overhead to the real-
time processing buffer. The production and consumption of the
EM samples were in an equilibrium.

5. Discussion

In traditional digital forensics, the data acquired from devices
under investigation are handled in a forensically sound way in
order to make sure the court admissibility of evidence. For ex-
ample, when a disk image is acquired from a computer, cryp-
tographic hash values are calculated and stored along with the
disk image. The hash values can later be used to verify the in-
tegrity of an image. Similarly, EM traces acquired from IoT
devices has to be stored with a hash verification facility. The

EMvidence framework supports hash calculation for EM traces
acquired in real-time and stores them along with the traces.
However, the patterns of the EM signals from an IoT device
depends on its current internal states and external noise sources
in the vicinity. Therefore, hash values are useful only to main-
tain the integrity of the originally acquired EM traces during
subsequent analysis. Further steps to ensure forensic soundness
of EM data acquisition and analysis require more studies that
we hope to conduct in the future.

The experimental evaluations with the EMvidence frame-
work indicate that EM-SCA based inspection of IoT devices
can be useful for forensic investigations in a variety of scenar-
ios. Detection of the forensic state, specific ECC curve, and
automatically segmenting ECC-related EM traces are device-
specific tasks. Performing each of those tasks with IoT devices
by using tailor-made ML models requires profiling of each in-
dividual IoT device of interest. This cannot be done without
the support of a large community due to the dynamics of IoT
ecosystem. This need reinforces the necessity of open-source
and extendable platforms like EMvidence.

The focus of EM-SCA techniques is to consider direct unin-
tentional emissions from the processor as a side-channel. How-
ever, there can be useful alternative side-channels that are also
highly relevant. For example, IoT devices are often equipped
with System-on-a-Chip (SoC) processors that contains a CPU
and a radio transceiver on the same chip. Due to the close
proximity between the CPU (a digital component) and the radio
transceiver (an analogue component), it has been shown that the
CPU’s digital operations can affect the analogue circuitry. This
causes information leakage from the CPU to the on-chip radio
transceiver [24]. Therefore it is possible to observe the trans-
missions of the radio from longer distances and extract CPU
operation-related information. This is a less explored oppor-
tunity that can have digital forensic use cases, such as when a
device needs to be inspected from a distance.

If the data stored on the IoT device are not encrypted and the
device has a standard interface, the data can be extracted using
existing forensic evidence acquisition methods [32]. However,
many IoT devices lack these standard interfaces, often forcing
investigators to take more risky approaches, such as chip-offs.
Mistakes during such operations could inadvertently destroy
useful evidence on a device. Therefore, in cases where a chip-
off is being considered, it may be a good approach to first try an
EM-SCA inspection on the device to gather as much informa-
tion as possible before attempting a chip-off.

There are various hardware and software mitigation tech-
niques available to counter EM information leakage [33]. It is
possible that an IoT device may have applied EM side-channel
mitigation techniques into its firmware in order to mislead EM-
SCA attacks. It is possible that such mitigation techniques
could cause ML classifiers to return inaccurate classification re-
sults. Further studies are required to assess the impact of such
mitigation approaches to the EMvidence framework. How-
ever, due to the computational and energy cost of such mitiga-
tion techniques, they are rarely applied in low-powered devices
making them less immediately threatening.
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6. Conclusion and Future Work

With the ever-increasing applications of IoT systems in do-
mestic and industrial environments, digital forensic investiga-
tions increasingly require the extraction of digital evidence
from them. Most forensically useful information in IoT devices
are currently extracted by intrusive inspections of hardware that
makes them less forensically sound. This work presented the
design of EMvidence, a framework for digital forensic investi-
gators and researchers to leverage unintentional EM radiation
from IoT devices as an information source. EMvidence is de-
signed in a manner that it can be easily extended with new func-
tionalities to keep up with the dynamism of IoT devices. Exper-
imental demonstrations proved that ML classifiers can be used
to gain useful insights in IoT investigative scenarios.

Several future work directions exist. The experimental
demonstrations provided in this paper used an Arduino and a
Raspberry Pi as representative IoT devices. It is necessary to
evaluate EMvidence with the most commonly encountered IoT
devices in real-world digital forensic scenarios. Currently, the
framework is tested only with HackRF SDR as the EM signal
acquisition device. It is necessary to test the inseparability be-
tween different SDR devices. For example, a ML model trained
from EM traces from one specific SDR device must be accurate
in classifying EM signals captured with other SDR devices.
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