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ABSTRACT The increasing use of smartphones has increased their presence in legal and corporate
investigations. Unlike desktop and laptop computers, forensic analysis of smartphones is a challenging task
due to their limited interfaces to retrieve information of forensic value. Electromagnetic side-channel analysis
(EM-SCA) has been recently proposed as an alternative window to acquire forensic insights from computers,
in particularly from Internet of Things devices. Along this line, this work experimentally evaluates the
potential of extracting information of forensic value from smartphones through their EM radiation. Initially,
a group of smartphones representing a diverse set of system-on-chip (SoC) processors were used to acquire
EM radiation traces. Later, deep learning models were trained to detect various internal software behaviours
running on the SoCs. The results of this work indicates that a wide variety of insights can be extracted
from smartphones through EM side-channel, increasing the potential opportunities for digital forensic
investigators.

INDEX TERMS Digital forensics, smartphone forensics, electromagnetic side-channel, software behaviour

detection, deep learning model.

I. INTRODUCTION

Digital forensics is the field where legal and corporate inves-
tigations are assisted with digital sources of evidence. A mul-
titude of subdomains exists under the umbrella of digital
forensics, such as file system forensics, network forensics,
database forensics, and mobile device forensics [1]. In com-
parison to desktop and laptop computers, smartphones are
more ubiquitous in day-to-day human lives. Therefore, in any
legal or corporate investigation scenarios, it is highly likely
to encounter smartphones as an evidence source, even when
general purpose computers are not available as an evidence
source [2].

Investigation on smartphones is a challenging task due
to multiple reasons. When following the classical digital
forensic investigation approach, it is necessary to acquire
images of internal storage of the smartphones [3]. The acqui-
sition of a forensic image from the non-volatile storage of
a smartphone is impossible without rooting/jailbraking it.
Such actions involve the risk of tampering the device to
an unrecoverable state. Furthermore, modern smartphone
operating systems use encryption to protect their internal
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storage [4]. Due to this reason, acquired forensic images of
non-volatile storage can potentially render unusable in an
investigation.

Under these circumstances, it is reasonable to perform live
inspection of smartphones to identify suspicious activities
as soon as a device is taken into custody. However, modern
smartphones use strong user authentication mechanisms such
as PIN codes, log-in patterns, and biometrics, such as finger-
print and facial recognition. Furthermore, the sheer diversity
of makes and models currently in the smartphone market
causes difficulty in following a unified approach to perform
live analysis on smartphones in investigations [5].

Electromagnetic (EM) radiation caused by internal elec-
tronic components of computers has long been recognised to
be leaking information. EM side-channel analysis (EM-SCA)
is a domain that utilises a large collection of methods and
algorithms to exfiltrate sensitive information from computers
through their EM radiation [6]. Due to the non-invasive nature
of EM-SCA, it has been proposed to be used as a forensic
insight-gathering method. Various types of forensic insights
have been demonstrated to be acquirable from IoT devices
in the literature [7], [8]. This work explores the potential
of utilising EM radiation of smartphones as a method to
acquire forensic insights from them during triage examination
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and live analysis of an investigation. This article makes the
following contributions:

« Experimentally demonstrates the potential of using deep
learning neural networks to extract forensic insights
from smartphones through their EM radiation.

« Identifies the emerging challenges in EM side-channel
forensic insight acquisition from smartphones due to the
advancements of SoC processor technology.

« Proposes potential avenues for future research in order
to enable EM side-channel forensic insight acquisition
for smartphones in real-world investigations.

The rest of this article is organised as follows. Section II
describes related literature on smartphone forensics and the
use of EM-SCA in similar contexts. Section III introduces
technical preliminaries that are necessary to understand the
approach to acquire, preprocess and analyse EM data using
specific hardware and software tools. Section IV illustrates
the specific details on dealing with EM radiation from
smartphones. The methods and results of acquiring forensic
insights from smartphones are presented in Section V fol-
lowed by a discussion on the findings in Section VI. The
Section VII introduces emerging challenges and future trends
in the field of EM side-channel forensics on smartphones.
Finally, Section VIII concludes this article.

Il. RELATED WORK

The unique identification and fingerprinting of comput-
ing devices through their side-channel radiation has been
explored in the literature producing various techniques. Radio
frequency distinct native attributes (RF-DNA) is a method
to create a unique sequence of numbers representing a spe-
cific device based on the EM radiation it produces [9], [10].
Furthermore, the magnetic field caused by smartphones are
shown to be detectable with the help of built-in magnetic
sensors of another smartphone in order to fingerprint such
devices [11]. Such device fingerprinting techniques can be
used in forensic investigation contexts to recognise a particu-
lar smartphone make and model before proceeding to extract
forensic insights.

The identification of running software activities on com-
puting devices has been previously demonstrated on multiple
work. For example, it is possible to identify cryptographic
operations [8], sorting algorithms [12], and specific known
software behaviours [13] on embedded systems such as
Arduino and Raspberry Pi devices. Chawla et al. performed
application inference on a SoC processor running Android
operating system by utilising a combination of EM radiation
and dynamic voltage frequency scaling (DVFS) information
from the CPU driver [14]. In order to acquire forensic insights
from smartphones in digital forensic scenarios, it is important
to explore the potential of using such methods under realistic
scenarios on actual smartphones.

Smartphones can be actively running audio or video steam-
ing applications by the time they were seized. The identifi-
cation of such devices during the triage examination phase
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can help law-enforcement to make timely interventions.
Yilmaz et al. explored the potential of detecting smartphone
camera status through their EM radiation patterns [15]. Their
work acquires EM radiation coming from the system-on-chip
(SoC) clock frequency of each considered smartphone type
and later uses two-stage dimensionality reduction approach
to select a feature vector. Finally, a classifier developed using
k-Nearest Neighbors (k-NN) algorithm was used detect the
smartphone model and the camera state with over 97% accu-
racy. An important finding of their work is the potential
of detecting smartphone camera status from both near-field
and far-field. The near-field EM data acquisition is per-
formed using an H-loop probe placed over the device camera,
whereas far-field EM data acquisition is performed using a
planar antenna placed 5 metres away from the device.

Moving further, Yilmaz et al. used convolutional neural
networks (CNN) to classify smartphone models and their
camera status through their EM radiation [16]. In this work,
four smartphone models and three camera states, i.e., front
camera active, rear camera active, and camera idle were
considered. Similar to the previous work, the CNN classifier
achieves almost 100% accuracy in determining the device
model and camera status. As the authors use a single dataset
acquired at a specific time period for training and testing ML
models, the generalisability of ML models to new datasets
from other devices of the same tested types needs to be
evaluated.

Ill. TECHNICAL PRELIMINARIES

This section initially introduces the theoretical and technical
details behind the production and preprocessing of EM data in
order to produce datasets that can be used with machine learn-
ing algorithms. Then, the theoretical and technical details
of using deep learning neural network algorithms with EM
datasets is presented.

A. ELECTROMAGNETIC RADIATION DATA

The acquisition of EM side-channel radiation data can be
performed using different types of data acquisition tools.
Among them, software-defined radio (SDR) platforms pro-
vide a great flexibility as they are both software-controllable
and software-programmable [17]. SDR platforms use the
complex IQ sampling with extremely fast sample rates. That
means, they produces a stream of samples where each sample
consists of two components, namely the in-phase (I) compo-
nent and the quadrature-phase (Q) component.

When observing EM radiation from a source, such as a
smartphone, using an SDR platform for a time period of T
with a sample rate of Fj, the total number of IQ data samples
produced is N; given by the Equation 1.

Ny =T x F (D

The conversion of a complex IQ sample EM trace, Y, into
a real-valued sample EM trace, x, can be done by taking
the absolute value of each complex sample as shown in the
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Equation 2.

xi=,/Y2+ Yé, where i € [1, Ny )

However, the EM trace, x is still in the time domain.
Time domain signals are susceptible to external noise sources,
which cause sudden fluctuations in the observed signal. Such
effects make it difficult to recognise the useful signal patterns
that represent important internal behaviours of the target
smartphone. Therefore, it is desirable to handle EM data
in the frequency domain. This is achieved by calculating
short-time Fourier Transform (STFT) [18] as follows, which
produces a matrix X:

Ny
STFT {x[n]} = X(m, w) = Zx[n]w[n _ m]e—jwn 3)
n=1

In the Equation 3 on STFT calculation, w represents the
frequency variable, while m represents the time index of each
Fourier Transform operation window. The resulting STFT
matrix, X, has a frequency axis with a length of W;. This
length is equal to the size of the Fourier Transform window
in the STFT operation. Meanwhile, the time axis of the
STFT matrix, X, has a length of N,,, which is the number
of windows produced by the STFT operation. The value of
N,, can be calculated as shown in the Equation 4. There, N; is
the number of samples in the original signal, W; is the FFT
window size, and O is the number of overlapping samples.

Ny — W.
N, = floor (—ng — Oi ) +1 4)

Window Size (W)
—_——
101010
010101

X = 101010 }T1meSteps(NW)

The X matrix (N,, x W) resulted from an acquired EM trace
serves as the basis to create datasets to train and test machine
learning models.

B. DEEP LEARNING NEURAL NETWORKS

Deep learning neural networks are built by stacking multiple
layers of artificial neurons on top of each other where the
two outer layers take the input data and produce predictions
respectively. Equation 5 represents the activation of the first
layer of a neural network. X is the matrix of the input features
where each row is a training instance and each column is
a feature; W is the weight matrix representing the con-
nections from the input feature vector to each perceptron in
the given layer;vector () contains the bias weights for the
connections between bias neurons and each neuron in the
layer. Meanwhile, ¢ is the activation function that computes
the output matrix Z(! from the layer.

ZM = pxw® + pD)y §))

Multiple metrics can be used to test the performance of
a trained model using the number of true positives (TP),
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false positives (FP), and false negatives (FN) produced by the
network on the testing dataset. The precision (see Equation 6)
measures the accuracy of the positive predictions of the net-
work, while the recall (see Equation 7) measures the ratio of
making correct positive predictions against the total number
of positive labels in the dataset. A better metric that combines
both the precision and the recall to produce a single measure
is F1 score shown in the Equation 8.

TP

L 6
precision TP+ FP (6)
TP
recall = ——— @)
TP + FN

recision X recall
F=2x (% ) ®)

precision + recall

IV. SMARTPHONE ELECTROMAGNETIC RADIATION

For the acquisition of EM data, a HackRF One SDR device
is used on this work [19]. HackRF has a tunable frequency
range from 1 MHz to 6 GHz and supports sample rates up
to 20 MHz. In order to capture EM radiation of smartphones
at the near-field, an H-Loop near-field probe with a diameter
of 25 mm is connected to the HackRF device [20]. Finally,
the HackRF device is connected to a host computer viaa USB
cable, which runs GNU Radio library [21]. The GNU Radio
library saves EM data to files as raw IQ samples where each
component of a complex 1Q sample is a 32 bit floating-point
value. Therefore, a single IQ sample generated through this
data acquisition setup is 8 bytes long.

A smartphone can be producing EM radiation from various
internal hardware components in various signal frequencies.
As the information related to the ongoing activities of a
smartphone is associated with its SoC chip, the system clock
frequency of the SoC chip can be considered as the most
important EM frequency to observe [15]. In order to locate
the most appropriate location to observe EM radiation from
the exterior of a smartphone, the H-loop near-field probe
can be moved across the surface of the device while plotting
the radiation pattern as a spectrogram. The location of the
strongest signal observation at the system clock frequency
can be fixed as the appropriate antenna placement for EM
data acquisition for a particular smartphone.

The Figure 1 illustrates the placement of the H-loop
near-field probe over an iPhone 4S device for acquiring EM
radiation from the device. While the smartphone is powered
on and the display is active, EM radiation was observed for
a brief period of time at the clock frequency of the iPhone
4S5, which is 1 GHz, using a sample rate of 20 MHz. As can
be seen from the spectrogram of the signal (see Figure 2),
multiple peaks can be observed around 1 GHz frequency. The
patterns of these peaks varies according to the user interac-
tions made with smartphone by openning and closing differ-
ent apps. Furthermore, the radiation strength of the observed
signal significantly weakens when the device display goes
off, which puts most of the internal software activities to a
halt.
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TABLE 1. The SoC chips, their system clock frequencies of different core clusters, and some examples for smartphones that employ the SoC. The star (*)
symbol denotes the smartphone products that were used for the experimentation in this work as a representative of the corresponding SoC.

System-on-Chip Architecture CPU Frequency 1 CPU Frequency 2 Devices

iPhone 4S*, iPad 2, Apple TV
Apple AS ARMv 7-A 1 GHz (2 cores) N/A (3rd generation), iPod Touch

(5th generation), iPad Mini (1st

generation).

S Xperia T*, Xi i Mi-
Qualcomm Snapdragon | ARM v7-A 1.5 GHz (2 cores) N/A ZZnyHT%eHSne S 111?1?8] IWiri—
MSM8260A dows Phone 8X, etc.

Samsung Galaxy Grand
Qualcomm Snapdragon | ARMv §8-A 1.2 GHz (4 cores) N/A Prime*, Samsung Galaxy E7
MSM8916 Huawei G621, HTC Desire

510, etc.

Nokia 4.2*, Redmi 7A, Redmi
Qualcomm Snapdragon | ARMv §-A 1.95 GHz (4 cores) 1.45 GHz (4 cores) SAO llgedmi,SAe Sllllal Sam:urr?gl
SDM439 Galaxy A0, Vivo Y95, etc.

FIGURE 1. Placement of the H-loop near-field antenna of the HackRF SDR
over an iPhone 4S device for EM data acquisition.

There is a huge variety of smartphone makes and models
currently in use. However, there are only a limited number of
SoC chip instruction set architectures and chip manufactur-
ers for mobile devices. Therefore, many smartphones from
different manufacturers employ the same chip architectures.
As a result, the methods to detect software behaviours of
certain makes and models of smartphones can be potentially
extended to be used on many other smartphone makes and
models, as far as they use similar SoC chips. The Table 1
illustrates the type of SoC chips and their system clock
frequencies from four different smartphone models. The
experimental evaluations of the methods presented in this
work use these four types of smartphones as EM radiation
sources.

V. FORENSIC INSIGHTS FROM SMARTPHONES

This section presents the procedure to acquire and preprocess
EM data from smartphones. Then, the use of preprocessed
EM data with deep neural network models to extract forensic
insights will be illustrated.

A. PREPARATION OF DATASET

For the purpose of this study, 4 models of smartphones are
considered as target devices, which are illustrated in the
Table 1. For each device, the system clock frequency of the
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FIGURE 2. EM radiation spectrum of the iPhone 4S device around the
clock frequency of its SoC processor, i.e., 1 GHz, which is observed for a
time period of about 1 second.

SoC processor is considered as the target information-leaking
frequency. For the SoCs that has multiple clock frequen-
cies (CPU frequency 1 and 2 specified in Table 1), all
those frequencies and their nearby harmonics were con-
sidered as potential information leaking frequencies dur-
ing initial inspection of the SoCs to identify a suitable
frequency.

In order to identify the location on a device where the
EM radiation is the strongest, The H-loop antenna was
moved around the surface of the device while visualising
the clock-frequency signal in real-time as spectrogram. This
process was repeated to identify best antenna position for
each device. As the next step, each device was inspected
to identify a set of important apps and behaviours. For the
purpose of this research, the number of activities for each
device was fixed to 10, which includes various apps being
active on the device.

In order to acquire EM radiation data for each device,
the following procedure was used. While a specific previ-
ously identified software behaviour is active on a particular
device, the H-loop antenna was placed over the device and
capture EM radiation data using the HackRF device for a
few seconds. The EM radiation was sampled at 20 MHz for
each case. This procedure resulted in 10 EM trace files for
each device; 40 EM trace files in total for the 4 smartphone
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Computer

(2) Identifying Frequency
and Position

(7) Training Deep Neural

(8) Testing the Models Network Modes

(3) Recognising Important
Device Activities

(4) EM Trace Acquisition
for Each Activity

T — Tmin

T scaled =
Tmaz — Tmin

(6) Normalising
Features of the Dataset

(5) Short-time Fourier
Transform of EM Traces

FIGURE 3. The pipeline for EM data acquisition, preprocessing, and finally training deep learning models to predict internal

software activities of smartphones.

devices. Each EM trace file, which consists of time domain
signal, was applied to STFT function to produce a series of
frequency domain windows. For deep learning, each of such
window is considered as a training instance whereas the cor-
responding software activity of the smartphone is considered
as the label.

The resulting EM dataset of each smartphone was used
to build individual deep learning models to identify soft-
ware activities of the corresponding device. Some of the
hyperparameters, such as input layer dimensions, of the
deep learning models depend on the dimensions of the EM
dataset. Therefore, the specific settings of the STFT oper-
ations, namely, the FFT window size, W, and the num-
ber of overlapping samples, O;, were adjusted during the
hyperparameter tuning of deep learning models as needed.
Figure 3 illustrates the pipeline of data acquiring, pre-
processing, and training deep learning models. Once the
models are tested, they can be used in forensic investiga-
tion situations with EM data acquired from devices under
investigation.

B. SYSTEM-ON-CHIP: APPLE A5

The Apple AS is a SoC that consists of 2 cores running at
1 GHz clock frequency. It is being used on multiple devices,
such as iPhone 48, iPad 2, Apple TV (3rd generation), iPod
Touch (5th generation) and iPad Mini (1st generation). For
the purpose of experimentation, this work uses the iPhone
4S as a representative device. During the initial inspection
of iPhone 4S device, 10 different device behaviours were
identified for the deep learning-based detection through EM
radiation. These device behaviours are namely, calendar-app,
camera-photo, camera-video, email-app, gallary-app, home-
screen, idle-device, phone-app, sms-app, and web-browser.
These behaviours are labeled from 0 to 9. Figure 4 depicts the
power spectral density (PSD) of the captured EM radiation for
some of the software behaviours.
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FIGURE 4. Power spectral density (PSD) of 4 different software bahavours
of the iPhone 4S device.

In order to convert the time domain EM traces to the
trainable dataset, the STFT window size, W and the overlap
size, Os need to be set. The larger the Wy value, the more
frequency bandwidth is included in a single training sample.
However, at the same time, it increases the dimensionality of
the input samples for deep learning. Therefore, it is desirable
to set the W, to as smaller value as possible as long as
it provides a sufficient classification accuracy in the deep
learning models. Meanwhile, larger W values makes the
number of available training samples smaller. To overcome
this, Oy value can be increased. Considering these factors,
the STFT window size, W;, was set to 2048 along with
an overlap size, O;, of 256 by empirically testing differ-
ent potential settings against the classification accuracy they
produces.

When setting up the hyperparameters for a deep neural
network, the input feature vector size is set to 2048 as
each STFT window is of the same size. The Table 2
details the structure of the deep neural network. It consists
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TABLE 2. The hypterparameters of the deep neural network setting used
for iPhone 4S and Sony Xperia and Galaxy Grand Prime devices.

Layer Type Output Shape | # of Parameters
Dense (ReLU) 1400 2868600
Dense (ReLU) 800 1120800
Dense (ReLU) 500 400500
Dense (ReLU) 200 100200
Dense (ReLU) 100 20100

Dense (Softmax) 10 1010
Total Parameters 4,511,210

TABLE 3. Performance of the deep learning model to detect 10 software
behaviours of the iPhone 4S device on the testing dataset.

Class Precision | Recall | Fl-score | Support
calendar-app (0) 0.82 0.80 0.81 1011
camera-photo (1) 0.82 0.79 0.80 1010
camera-video (2) 0.86 0.98 0.92 993

email-app (3) 0.99 0.93 0.96 939
gallery-app (4) 0.79 0.82 0.81 1043
home-screen (5) 0.95 0.96 0.95 1027

idle-device (6) 0.99 0.99 0.99 999

phone-app (7) 0.97 0.91 0.94 974
sms-app (8) 0.85 0.78 0.82 1003
web-browser (9) 0.74 0.79 0.77 1001
Macro Avg 0.88 0.88 0.88 10000
Weighted Avg 0.88 0.87 0.87 10000
Accuracy 0.87 10000

of 5 hidden dense layers with decreasing number of dimen-
sions. The hidden layers are configured to use Rectified
Linear Unit (ReLU) as the activation function. The output
layer consists of 10 nodes as there are 10 classes to predict and
uses Softmax as the activation function. The ReL U activation
function produces a linear output for non-zero inputs making
it suitable for internal layers, whereas Softmax activation
function helps to produce a probability distribution across the
output nodes making it suitable for predicting classes with
probabilities.

In order to create the dataset for training the deep neu-
ral network, 10,000 training instances, i.e., STFT win-
dows, were taken from each class, which results in a total
of 100,000 training instances for the 10 classes. In the begin-
ning, the training and testing samples were separated by
9:1 ratio. Then, the network was trained for 50 epochs where
arandom 10% of the training dataset is used for validation at
the end of each epoch. The network uses stochastic gradient
descent (SGD) as the cost/optimisation function with a learn-
ing rate of 0.001 and sparse categorical crossentropy as the
loss function.

Table 3 illustrates the performance of the trained deep
learning model on the testing dataset. Macro average of the
precision, recall and F1 metrics represents the average value
acquired for each class, whereas weighted average represents
the average value of the metrics for each class adjusted
according to the number of testing samples available for each
class, i.e., support values in the table. As it is evident from
the table, the trained model achieves an accuracy of 87% on
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FIGURE 5. Confusion matrix of the deep learning model to detect
10 software behaviours of the iPhone 4S device on the testing dataset.
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FIGURE 6. Power spectral density (PSD) of 4 different software
behaviours of the Sony Xperia device.

testing data. Figure 5 depicts the confusion matrix of the deep
learning model for testing data.

C. SYSTEM-ON-CHIP: QUALCOMM SNAPDRAGON
MSM8260A

The Qualcomm Snapdragon MSM8260A is a SoC with
2 cores running at 1.5 GHz clock frequency. The SoC it
being used on multiple smartphones in the market, such
as Sony Xperia T, Xiaomi Mi-2A, HTC One S, and HTC
Windows Phone 8X. For the experimentation of this work,
the Sony Xperia T device was used as a representative of
the SoC where the same set of device behaviour activities
of the Apple iPhone 4S were selected. After identifying the
leakage frequency and the best antenna position for the Sony
Xperia device, 10 EM trace files were acquired representing
the 10 device behavioural states. The Figure 6 illustrates the
PSD of some of the software bahaviour classes of the Sony
Xperia device. The EM traces were preprocessed and used
to create a dataset according the same procedure described
previously in Subsection V-B for iPhone 4S device. The
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TABLE 4. Performance of the deep learning model to detect 10 software
behaviours of the Sony Xperia device on the testing dataset.

Class Precision | Recall | Fl-score | Support
calendar-app (0) 0.97 0.96 0.96 1011
camera-photo (1) 0.94 0.97 0.95 1010
camera-video (2) 0.84 0.88 0.86 993

email-app (3) 0.79 0.90 0.84 939
gallery-app (4) 0.84 0.69 0.76 1043
home-screen (5) 0.77 0.73 0.75 1027

idle-device (6) 0.94 0.97 0.96 999

phone-app (7) 0.94 0.95 0.95 974
sms-app (8) 0.79 0.81 0.80 1003
web-browser (9) 0.98 0.97 0.98 1001
Macro Avg 0.88 0.88 0.88 10000
Weighted Avg 0.88 0.88 0.88 10000
Accuracy 0.88 10000
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FIGURE 7. Confusion matrix of the deep learning model to detect
10 software behaviours of the Sony Xperia device on the testing dataset.

Table 2 illustrates the hyperparameter configurations for the
deep neural network used to train and test smartphone device
behaviour.

The Table 4 illustrates the classification results obtained
from the trained deep learning model for Sony Xperia device.
It is evident that the internal behaviours of the device can
be distinguished with an accuracy of 88%, which is almost
similar to the iPhone 4S device analysed by using a simi-
larly configured deep learning model. Figure 7 illustrates the
confusion matrix for the deep learning model of Sony Xperia
device performing on training dataset.

D. SYSTEM-ON-CHIP: QUALCOMM SNAPDRAGON
MSM8916

The Qualcomm Snapdragon MSM8916 is a quad-core pro-
cessor with a clock frequency of 1.2 GHz. The SoC is being
used on various mobile devices, such as Samsung Galaxy
Grand Prime, Samsung Galaxy E7, Huawei G621, and HTC
Desire 510. Among them, Samsung Galaxy Grand Prime
device was selected as a representative of the SoC for the
experimentation of this work. Following the same procedure
for acquiring and processing EM data, a deep neural network
was trained to detect software behaviours of a Galaxy Grand
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FIGURE 8. Confusion matrix of the deep learning model to detect
10 software behaviours of the Galaxy Grand Prime device on the testing
dataset.

Prime device. The hyperparameters of the deep neural net-
work was set to the same values of the previous cases (see
Table 2). The model achieved an accuracy of 99% on the
testing dataset for 10 different software behaviours with just
10 epochs of training. The confusion matrix is shown in the
Figure 8.

E. SYSTEM-ON-CHIP: QUALCOMM SNAPDRAGON
SDM439

The Qualcomm Snapdragon SDM439 is an octa-core SoC
that are organised as two equally-sized clusters. The 4 cores
of the first cluster runs at 1.95 GHz clock frequency, while
the 4 cores of the second cluster runs at 1.45 GHz clock
frequency. The SoC is currently being used on multiple
mobile devices, such as Nokia 4.2, Redmi 7A, Redmi 8A,
Redmi 8A Dual, Samsung Galaxy AO1, and Vivo Y95. For
the experimentation of this work, the Nokia 4.2 device was
selected as a representative of the SoC.

The observation of EM radiation from Nokia 4.2 device
was a challenging task due to the two CPU clusters with
two different clock frequencies. The potential frequency
range to scan through during initial inspection is wider com-
pared to SoCs that has a single clock frequency. Even after
a specific frequency was identified, there is no guarantee
whether it is the only information-leaking EM radiation
coming from the SoC or whether the identified frequency
is sufficient to infer internal software behaviours of the
device.

During the initial inspection of the device, a signal was
identified at 1.53 GHz that indicated a changing pattern
against the variation of software activities that were run-
ning on the device. Therefore, this frequency was used to
acquire EM radiation from the device. Similar to previous
scenarios, EM radiation traces were acquired while the Nokia
4.2 device was running 10 different software behaviours.
However, when these EM traces were visualised to see their
distinctiveness, it was noted that most EM patterns of soft-
ware behaviours looked similar in PSD plots. Only a few
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FIGURE 9. Power spectral density (PSD) of 4 different software
behaviours of the Nokia 4.2 device.

TABLE 5. The hypterparameters of the deep neural network setting used
for Nokia 4.2 device.

Layer Type Output Shape | # of Parameters
Dense (ReLLU) 1400 2868600
Dense (ReLLU) 800 1120800
Dense (ReLU) 500 400500
Dense (ReLU) 200 100200
Dense (ReLU) 100 20100
Dense (ReLU) 50 5050

Dense (Softmax) 4 204
Total Parameters 4,515,454

activities (see Figure 9) demonstrated a noticeable pattern
difference from each other. Therefore, 4 software activities,
namely idle device, calendar app, camera app, and email app,
were used for training and testing a deep learning model to
distinguish between them.

The Table 5 illustrates the hyperparameter configuration
for the deep neural network used for this particular clas-
sification. The last layer of the network was set to con-
tain 4 nodes as there are two classes to classify and it
uses a Softmax activation function. For training the network,
20,000 training instances from each class were used, totalling
to 80,000 instances. Finally, with a 0.005 learning rate and
30 epochs, the network was trained. A 10% of the dataset
(8000 instances) was separated at the beginning for the testing
of the trained model, which produced the results illustrated
in Table 6. As can be seen, the classification accuracy reached
82% on the testing data.

Further attempts were made to build deep models
with 10 classes in order to distinguish between the
10 software activities of the original device. However,
as noticed initially by visualisations of the data, the mod-
els could not achieve a significant classification accuracy
for various neural network hyperparameter configurations
considered for the 10 class classification problem. In all con-
figurations, the networks only achieved an accuracy closer to
51% indicating that the leakage patterns are not sufficiently
distinguishable.
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TABLE 6. Performance of the deep learning model to detect 4 software
behaviours of the Nokia 4.2 device on the testing dataset.

Class Precision | Recall | Fl-score | Support
camera-video (0) 0.99 0.99 0.99 1926
calendar-app (1) 0.72 0.78 0.75 1955

idle-device (2) 0.83 0.99 0.90 2096
web-browser (9) 0.75 0.53 0.62 2023
Macro Avg 0.82 0.82 0.82 8000
Weighted Avg 0.82 0.82 0.81 8000
Accuracy 0.82 8000

VI. DISCUSSION

For the purpose of acquiring digital evidence, various digital
forensic techniques and tools have been developed. In many
situations, these techniques can be extended to investigate
on smartphones as well. However, the nature of smartphones
consists of aspects that are not available on typical com-
puting systems, such as desktop and laptop computers. The
heterogeneity of smartphones in use from various vendors
with a diverse set of hardware and software configurations
make the development of forensic tools a challenging task [5].
In such dynamic environments, the application of artificial
intelligence (AI) facilitates the resilience to adapt to rapidly
changing requirements.

The deep learning models trained and tested in this work
indicates that specific predefined software behaviours of
smartphones can be extracted through their EM radiation
without any invasive actions to the devices. Depending on
changing requirements, new deep learning models can be
trained targeted at new devices and their software behaviours.
The EM radiation acquisition from a smartphones is directly
focused on the EM radiation of their on-board SoC. There-
fore, the deep learning models are actually trained to detect
the behaviours of specific SoCs instead of smartphones.
As a result, a model trained to detect software behaviours
of a specific SoC can potentially generalise across many
smartphone makes and models that uses the same chip. For
example, although a deep learning model was trained for
Qualcomm Snapdragon SDM439 SoC using Nokia 4.2 smart-
phone in this work, the same deep learning model can poten-
tial be used to detect software behaviours on Samsung Galaxy
AO01 smartphone which is still in the market. Further stud-
ies are necessary to identify the impact of device-specific
factors, such as a smartphone’s physical design, the ori-
entation and location of the SoC on the device’s circuit
board, to the generalisability of a deep learning model across
devices.

The techniques and tools developed to acquire forensic
evidence from computing systems have to be forensically
sound. According to McKemmish [22], the forensic sound-
ness of a digital forensic investigation procedure is ensured
by 4 evaluation criteria. Firstly, the interpretation of the the
electronic evidence should not affected by the investigation
process in question. Secondly, the potential errors and doubts
that are involved with the forensic method should have been
reasonably identified and satisfactorily explained. Thirdly,
the analysis process should be independently verifiable by
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TABLE 7. Two recent SoC chips Apple A10 and A14 that uses ARM's big.LITTLE technology to distribute workload between multiple CPU clusters with

different capabilities.

System-on-Chip Architecture

CPU Frequency 1

CPU Frequency 2 Devices

Apple A10 ARM v8-A

2.34 GHz (2 cores)

iPhone 7 and 7 Plus, iPad 6th
and 7th generations, iPod touch
(7th generation).

1.1 GHz (2 cores)

Apple Al4 ARMv 8-A

3.1 GHz (2 cores)

iPad Air (4th Generation),
iPhone 12 and iPhone 12 Mini,
iPhone 12 Pro and iPhone 12
Pro Max.

1.8 GHz (4 cores)

multiple parties and should produce the same result. Finally,
the analysis process should be carried out by a sufficiently
experienced and skilled individual. The procedure of gath-
ering insights about the internal behaviours of smartphones
can satisfy the aforementioned first, third and fourth criteria.
However, the use of deep learning models to make predictions
does not satisfy the second criterion as the predictions are
associated with a probability and does not ensure a 100%
accuracy. This is why the information gathered through EM
side-channel analysis is called forensic insights instead of
forensic evidence. Consequently, these insights should be
only used as hints for an investigator to proceed with an
investigation and discover court-admissible forensic evidence
through other means.

While EM data can be acquired through various other
hardware devices such as signal analysers and oscilloscopes,
SDR hardware provides a great flexibility in adjusting the
EM frequency, the sample rate, the level of signal ampli-
fication, and many more for users who are not experts in
radio frequency (RF) engineering. Throughout the experi-
ments of this work, the sample rate of the SDR hardware
was set to 20MHz, which is the maximum rate supported by
the HackRF SDR device. However, the level of precision in
sampling can be increased further by using SDR devices with
much larger sample rates if necessary. Furthermore, external
signal amplifiers can be used to boost weak EM radiation
coming from devices, which are currently not possible to be
inspected. In digital forensic investigation contexts, a smart-
phone can be inspected in close proximity and therefore the
use of near-field H-loop antennas satisfies the requirement.
However, in situations where it is not possible to get to the
close proximity of a device, the use of far-field antennas can
be considered as demonstrated by Yilmaz et al. [16].

VII. CURRENT CHALLENGES AND FUTURE TRENDS
When performing EM-SCA to a computing system to acquire
forensic insights, one of the important starting steps is to
identify the information-leaking frequency channels of the
device. Currently, the system clock frequency of the CPU is
considered as the key focus. While this is straightforward for
many existing SoC processors used on smartphones, multiple
trends in the domain are increasingly threatening the current
procedure of acquiring EM radiation data.

Modern SoC processors used on smartphones consists of
multiple cores that can run multiple threads simultaneously.
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This means that multiple forensically-important software
activities can be running at the same time on the device,
such as encrypting data stored in non-volatile storage and
performing communication through wireless network. With
the increasing number of cores, the number of simultane-
ous activities increases further. As long as the CPU cores
are running at the same clock frequency, EM radiation can
be observed and EM trace data can be collected. However,
the classification of these data using machine learning tech-
niques into a predefined set of classes becomes a signifi-
cant challenge. This requires further research into multi-label
classification methods to detect multiple activities running
simultaneously [23].

Another recent trend in mobile device SoC processors is
the use of various strategies to increase the performance
of processing while reducing the energy consumption. One
approach for that is the design of SoCs with multiple clusters
of CPU cores that has different processing capabilities; each
cluster of CPU cores runs at a specific clock frequency and
provides a unique processing power. Mobile device SoCs
such as Apple A10 and A14 (see Table 7) that are based on
ARM instruction set architectures uses ARM’s big. LITTLE
technology that makes use of this strategy [24]. For example,
Apple A10 SoC processor runs activities that are less process-
ing intensive, such as an email app, on the 2 cores that runs
at 1.1 GHz that consumes less energy from the battery. When
it is required to run computationally heavy activities, such
as playing a game app or a high definition video, the SoC
deploys the 2 cores that runs at 2.34 GHz consuming more
energy but with improved performance. Due to the need of
multi-tasking, the SoC can dynamically switches between the
two clusters of CPU cores, making it difficult to capture EM
radiation in either of the 1.1 GHz and 2.34 GHz frequencies.

Similarly, another potential problem that adds up to this
situation is the use of dynamic voltage frequency scal-
ing (DVFS) techniques in modern processors [14]. It allows
a SoC processor to dynamically adjust its clock frequen-
cies according to workload. These techniques demands the
observation of EM radiation simultaneously at multiple fre-
quencies and also requires to dynamically change the signal
observation frequency on-demand without prior information.

A potential approach to observe EM radiation from SoC
processors that has such complexities is to disable others
and isolate a specific CPU core by running a selected thread
on it. Furthermore, DVFS can be disabled to fix the CPU
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clock frequency to a predefined values. By doing so, the EM
radiation coming from a specific CPU core on a specific
frequency can be extracted and be used to profile it. However,
in order to extract forensic insights from SoC processors
in realistic scenarios, it is necessary to develop new EM
data processing and deep learning methods to combine and
generalise the profiles of different cores or core clusters of a
SoC.

The mitigation of side-channel information leakage from
computing systems is an active research area with various
potential methods already published and in use [25], [26].
These methods include both software and hardware mitiga-
tion strategies, such as randomisation of software activities,
physical shielding of the device’s internal components, use
of dual-line logic, etc. In this work, it was observed that an
increasing difficulty in capturing EM radiation when moving
from SoCs of ARM version 7 to version 8 instruction set
architectures. The ARM version 7 consists of 32-bit instruc-
tions while ARM version 8 includes both 32 and 64 bit
instructions. It is possible that the latest versions of ARM
CPU designs include side-channel countermeasures that pre-
vents the observation of EM radiation with existing methods.
This situation poses a challenge to the EM side-channel anal-
ysis on mobile devices in the future and demands the devel-
opment of novel methods that are resilient to side-channel
mitigation techniques.

In addition to the EM side-channel analysis, there exists
various other non-invasive side-channels for exfiltrating
information from computing systems, such as acoustic and
power side-channels [27], [28]. Certain information that
are not leaked through the EM side-channel can be avail-
able on such other side-channels. Therefore, it would be
interesting to explore the potential of combining multiple
side-channel analysis approaches together to increase the
attack surface on smartphones. In addition to the typical EM
side-channel radiation that directly emits from the processor
chip, a new kind of attack called screaming channels has
been introduced where the EM radiation of CPU operations
get modulated into the legitimate radio transmissions from
the SoC processor, such as WiFi, Bluetooth, and cellular
network transmissions [29], [30]. Future research should also
explore the potential of using such extended EM side-channel
attacks to extract forensic insights from smartphones from a
distance.

VIIl. CONCLUSION

The work presented in this article introduced EM
side-channel analysis as a window to extract forensic insights
from smartphones. Using empirical evaluations, it was shown
that deep learning models can be trained to detect spe-
cific predefined software activities running on smartphones
through the EM radiation they produce with near-field. The
deep learning models achieved classification accuracies vary-
ing from 82% to 99% on different smartphones. Furthermore,
this work identified the emerging challenges and opportu-
nities to the application of EM-SCA for forensic insight

13246

acquisition from smartphones that need to be the focus of
future research.
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