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ABSTRACT Electromagnetic (EM) side-channel radiation from Internet of Things (IoT) devices are shown
to be effective at acquiring forensic insights during digital investigations. These EM radiation patterns can be
analysed with the help of machine learning algorithms to detect internal behaviours of IoT devices, which
can be relevant to an investigation. However, the real-world application of EM side-channel analysis for
digital forensic purposes is obstructed by the lack of suitable tools and the technical expertise among law-
enforcement communities. Although certain frameworks, such as EMvidence, exist to cater this requirement,
the sheer diversity of the IoT ecosystem makes it difficult to support a sufficiently large collection of devices
that are commonly encountered in forensic investigations. The work presented in this paper makes multiple
contributions towards addressing this problem. Initially, a detailed discussion on the challenges of applying
EM side-channel analysis in practical digital forensic purposes is provided, where the practical difficulties are
illustrated. Then, it was shown that the existing EM side-channel analysis frameworks, such as EMvidence,
can be used to overcome the diversity of IoT devices in forensics by equipping them with extensible plug-ins
targeting the internal system-on-chips (SoC) of each device type. These plug-ins are expected to incorporate
trained machine learning models, which are capable of recognising patterns of specific IoT device SoCs.
However, the development of such plug-ins requires sufficiently diverse EM datasets from IoT devices.
Facilitating this requirement, this work presents a comprehensive EM side-channel dataset representing a
diverse collection of popular IoT devices and smartphones. The presented dataset is used to demonstrate the
potential usage of machine learning models to recognise device behaviour.

INDEX TERMS IoT forensics, electromagnetic side-channel, IoT devices, datasets, software behaviour

detection, machine learning.

I. INTRODUCTION

With the increasing use of Internet of Things (IoT) devices
and smartphones in the day-to-day life, it is inevitable to
increasingly encounter them in legal and corporate investiga-
tions [1]. This problem domain currently combines a range of
existing forensic techniques, such as network forensics, file
system forensics, and mobile forensics, to acquire forensic
evidence from IoT devices and smartphones [2]. The large
diversity of IoT devices and smartphones currently in the
market and the rapid changes occur in software and hardware
of existing devices, makes it challenging for law-enforcement
agencies to maintain a capability to use them in investiga-
tions. This situation demands for alternative approaches that
are more effective at IoT and smartphone forensics.
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The electromagnetic (EM) radiation of computers is known
to leak information. When program instructions are being
executed on the central processing unit (CPU) of a device,
the instructions themselves and the data being handled by
the execution of the instructions get reflected in the EM
radiation patterns [3]. This information leakage is exploited
by various types of EM side-channel analysis (EM-SCA)
attacks. Identifying software behaviour, detecting malicious
modifications to both hardware and software, and retrieving
critical data handled by a software — such as cryptographic
keys — are to name a few of such EM-SCA attacks [4]. It is
an active research area in the field of computer security with
a large body of literature.

In addition to the information security perspective of these
EM-SCA attacks, it has recently been shown that EM-SCA
attacks can be used in the field of digital forensics to extract
forensic insights from computing devices [5]. In contrast to
the general purpose computers, such as desktop and laptop
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computers, smart devices have drawn a major interest in
EM-SCA research in the recent times [6]. An EM-SCA attack
is performed by capturing the EM radiation of a target device
— usually referred to as a device-under-test (DUT) — on a
particular signal frequency for a predefined period of time,
and later analysing the captured EM data. Unlike the security
application of EM-SCA, the forensic application is more fea-
sible since the DUT will be under total control of the attacker,
i.e., forensic investigator. While being a promising approach
for IoT forensics, the application of EM-SCA techniques in
the domain is still not realised due to an important reason.

In order to perform EM-SCA for acquiring forensic
insights from a particular IoT device or a smartphone,
the EM radiation patterns of the target device have to be
profiled and incorporated into EM-SCA methods. The pro-
filing of a particular device starts with the required spe-
cialised hardware, including DUTs and data acquisition
equipment [7]. The actual work on developing the EM-SCA
technique for analysing EM data of the particular DUT
comes as the second step. Due to the sheer diversity of
the potential DUTs that should be profiled, it is not possi-
ble for law-enforcement agencies or EM-SCA researchers
to get access to a sufficiently wide collection of devices
to begin with [8]. Due to this reason, the development of
EM-SCA techniques targeting IoT devices and smartphones
has become a slow process [9]. This situation has lead to
the lack of EM-SCA method implementations to support IoT
devices and smartphones that are commonly encountered in
forensic investigations.

A potential approach to overcome this barrier and
enable the real-world use of EM-SCA for IoT forensics is
to facilitate the process by providing tools or frameworks.
For example, the EMvidence framework proposes to facilitate
the development of EM-SCA techniques to acquire forensic
insights from IoT devices and smartphones by a large and
independent community of developers [10]. When individual
developers focus on specific DUTSs to acquire EM radiation
data and develop EM-SCA techniques, such implementations
can be distributed — as extensible plug-ins to the EMvidence
framework — to potential users who are in need of acquiring
forensic insights from those types of device. In that way,
the burden of possessing a large collection of IoT devices and
smartphones in one organisation is minimised.

While this approach is promising, there is a lack of
sufficiently implemented EM-SCA methods to the EMvi-
dence framework for it to be widely adopted among law-
enforcement agencies. This work focuses on this problem and
offers solutions to enable the real-world use of EM-SCA in
IoT and smartphone forensics. Along this avenue, a diverse
set of IoT devices and smartphones were used in this work
to acquire EM radiation data representing their internal
behaviour. Those data are thoroughly validated to ensure that
they sufficiently captures the leakage information of each
considered device. Later, the acquired EM datasets are used
to demonstrate the possibility of building machine learning
models as plug-ins for the EMvidence framework.
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This work makes the following contributions to the domain
of IoT Forensics:

« Identifies and discusses the challenges associated with
applying EM-SCA for gaining forensic insights from
IoT devices.

o Enables and accelerates EM-SCA for IoT forensics
research by presenting an EM side-channel dataset cov-
ering a broad range of IoT devices and smartphones.

« Demonstrates the use case of EM dataset for building
plug-ins for the EM-SCA framework, which can be
followed to create new EM datasets and EMvidence
plug-ins by third parties.

The rest of this paper is organised as follows. Section II
discusses the related work on EM-SCA on smart devices and
the use of EM datasets in the domain. Section III provides
a technical background related to EM-SCA for forensics,
including the nature of EM side-channel radiation, the pro-
cedure of acquiring EM radiation data, and the format of
captured EM trace data files. The Section IV introduces the
EMvidence framework for IoT forensics using EM-SCA and
the process of building plug-ins for it. Section V describes
the details of producing and pre-processing the EM dataset
presented in this work. The use of the presented EM dataset to
build machine learning models is demonstrated in Section VI.
Finally, Section VII concludes the paper highlighting the
future work directions.

Il. RELATED WORK

Electromagnetic side-channel analysis (EM-SCA) and the
power side-channel analysis are highly related side-channel
attacks due to the correlation between power consumption of
a device and its EM radiation. Therefore the same methods
that are used for extracting side-channel information from
power consumption trace data are applicable to EM trace
data as well [11], [12]. These techniques have been widely
explored in the domain of information security for several
decades. Among various potential use cases of EM-SCA,
the most widely explored objective is the retrieval of cryp-
tographic keys from computing devices while they are per-
forming data encryption operations [13], [14]. Additionally,
large scale monitoring of IoT devices; detecting deviations
of program behaviour; and identification of malicious mod-
ifications to software and firmware are examples of other
application of EM-SCA [9], [15].

In the recent years, it has been shown that deep learning
algorithms are highly effective at extracting leaked informa-
tion in EM radiation patterns from computers [16]. While
classical EM-SCA algorithms face difficulties in dealing with
subtle changes in EM data, such as the effect of external EM
noise sources and the misalignment of EM trace files due to
timing errors in data acquisition, deep learning models are
shown to be resilient to such disparities. As a result, most
of the traditional EM-SCA attacks are rapidly being replaced
with their deep learning equivalents [17]. Due to this reason,
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the availability of large EM datasets is a necessary condition
for the rapid progress in the field of EM-SCA.

Due to the need of dealing with computers in a man-
ner that either makes absolutely no changes or causes only
clearly explainable changes to a computer, digital forensics
can largely benefit from EM-SCA techniques [4], [18]. The
ability to detect internal states and current behaviour of a
device can assist an investigator or a law-enforcement offi-
cer to quickly assess a situation in an investigation. Since
EM-SCA works when the target DUT is currently powered
on, it suits well to the triage examination phase of an investi-
gation. It has been shown experimentally that various forensic
insights can be acquired through EM-SCA techniques from
embedded devices, such as Arduino and Raspberry Pi, and
smartphones [5], [10], [19].

The side-channel analysis dataset of the National Agency
for the Security of Information Systems (ANSSI), commonly
referred to as ASCAD, is a dataset that provides a collection
of power traces for benchmarking cryptographic key retrieval
attacks [20]. The power traces in the ASCAD database are
acquired from an ATMega8515 microcontroller unit (MCU)
running two implementations of advanced encryption stan-
dard (AES) algorithm. The dataset uses the hierarchical data
format 5 (HDF5) [21] to distribute power traces and metadata
related to each power trace, such as plaintext, cryptographic
key, and ciphertext. In addition to that, the authors of the
ASCAD dataset provide Python functions to facilitate the
reading and the processing of the dataset for machine learning
purposes.

While the ASCAD dataset is useful to test new EM-SCA
methods for cryptographic key retrieval attacks, multiple fac-
tors make it unsuitable for IoT forensics research using EM-
SCA. Firstly, this dataset only includes power consumption
traces of the target IoT hardware platform. The use of the
power side-channel requires an attacker to physically tamper
the target device for capturing power measurements, thus
making it less forensically sound. Secondly, the ASCAD
dataset only includes the data representing a single SoC,
which is not widely used in off-the-shelf IoT devices. Thirdly,
the ASCAD dataset is limited to AES cryptographic opera-
tions occurring in the considered device. These factors are too
limited for the broad application of EM-SCA in [oT forensics
scenarios.

IIl. ELECTROMAGNETIC SIDE-CHANNEL FORENSICS

In order to understand the specific details of the EM side-
channel dataset, it is necessary to describe the nature of the
EM side-channel radiation from DUTSs, and the methods and
equipment that are used to capture EM radiation into EM
trace files. This section illustrates the necessary technical
background of those aspects.

A. NATURE OF ELECTROMAGNETIC SIDE-CHANNEL
RADIATION

Time varying electrical currents are known to generate EM
radiation. Therefore, any device that uses electricity as the
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FIGURE 1. The hardware setup for acquiring EM radiation from a smart
device. The data acquisition equipment - an SDR in this case - is
connected with an H-loop near-field antenna from one end and with a
host computer from the other end. Near-field probe is placed over the
smart device, i.e., DUT, in order to capture and save EM trace files on the
host computer.

power source, generates EM radiation. Digital electronic cir-
cuits consist of fast clock pulse generators to carry out their
internal functionalities. These fast clocks easily generate EM
radiation.

A computer consists of various internal components that
use fast clock pulses, such as processor, RAM, data bus
lines on the motherboard, video graphics card, display units,
and many more. Each of these components are handling
various critical information that may have security and pri-
vacy concerns. Therefore, any potential information leakage
through the EM radiation of any of those components can
be interesting to attackers. Modern smart devices, such as
smartphones and IoT devices, tend to employ system-on-
chips (SoC), which includes many peripheral components
inside a single chip. Therefore, the CPU cores of the SoC of a
smart device becomes the key focus of EM-SCA attacks [22].

Whenever a CPU core is executing a program, the instruc-
tions have to be fetched, decoded and executed. These oper-
ations causes the CPU registers to be loaded and unloaded,
changing the bit patterns in them. Flipping bits in CPU reg-
isters, i.e., 0—1 or 1— 0, affects the energy consumption
of the CPU core, which consequently results in EM radia-
tion. Therefore, the EM signals radiated from the CPU cores
correlate with the instructions and data that were handled
in registers. In particular, the pattern of the EM radiation
across time domain is shaped by the sequence of instructions
being executed and the pattern of data loading and unloaded
on registers. This means that the EM radiation patterns are
influenced by both the running programs and the data being
handled.

B. ACQUISITION OF ELECTROMAGNETIC RADIATION

The acquisition of EM radiation from a computing system
requires multiple hardware and software components (see
Figure 1). The computing system that is subjected to the
EM-SCA attack is the DUT. In the case of this work, the DUT
is either a smartphone or an IoT device. In order to capture
the EM radiation of the DUT, a signal capturing equipment
is used. This component can be either an oscilloscope, signal
analyser or a software-define radio (SDR). Depending on the
distance to the DUT from the signal capturing equipment,
a near-field or a far-field antenna have to be used [23]. The
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FIGURE 2. The spectrogram visualisation of EM radiation generating from
an loT device at 1 GHz device processor clock frequency, captured with a
sample rate of 20 MHz using an SDR hardware.

signal acquisition equipment is connected to a host computer
that runs the necessary software to read the EM data samples
and save them into trace files.

While there exists multiple types of signal acquisition
equipment, SDRs are preferred in this work. On SDR plat-
forms, the hardware layer is kept to a bare minimum and
all the important signal processing functionalities are han-
dled on software [24]. The hardware layer only performs
signal amplification and digitisation. Due to this reason,
SDRs provide great flexibility in processing acquired EM
data according to the application requirements. In this work,
aHackRF One SDR is used, which supports a data acquisition
frequency range from 1 MHz to 6 GHz [25]. The device has a
maximum sampling rate of 20 MHz. In order to configure the
SDR device and to process the data produced by it, GNU
Radio library is employed on the host computer [26]. The
GNU Radio library provides a graphical interface called GNU
Radio Companion (GRC), which facilitates creating visual
flow graphs to build EM data processing pipelines.

Since the EM radiation of interest is emerging from the
SoC processor of the DUT, being closer to the SoC during
data acquisition increases the strength of the signal reception.
Therefore, it is advantageous to use a near-field probe for
the data acquisition. In this work, an RF Explorer near-field
H-loop antenna with a diameter of 25 mm was connected
to the HackRF One device for the acquisition of data from
the DUT within close proximity [27]. Identification of the
ideal location over a DUT that maximises signal reception
has been explored in the literature with various tools and
algorithms [7]. For the purpose of this work, the optimum sig-
nal reception position for each considered DUT is identified
by manually moving the near-field antenna across the device
while plotting the spectrogram of receiving signal at the CPU
clock frequency (see Figure 2). The antenna position where
the signal is the strongest was fixed for the subsequent EM
trace acquisition for creating the dataset.

C. FORMAT OF ELECTROMAGNETIC TRACE DATA

When capturing EM radiation through a signal acquisition
equipment, there exists two potential sampling methods to
use. The first is real-valued sampling where the signal ampli-
tude across time domain is sampled at a fast rate. When
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this method is used, the sampling rate has to be at least
twice as high as the frequency of the signal being observed,
i.e., Nyquist sampling theorem [28]. For example, observing
an EM signal at 1 GHz frequency requires at least 2 GHz
sample rate. Achieving such high sampling rates is challeng-
ing due to the high cost of data acquisition equipment, and
the overhead of storing and processing large amounts of data.

The second sampling method is complex In-phase and
Quadrature-phase (I/Q) sampling, where the amplitude and
the phase of a signal is captured in each sample. As a result,
each sample becomes a complex number where the real
component contains the signal amplitude and the imaginary
component contains the signal phase for the considered time
instance. While complex I/Q sampling complicates the nature
of individual samples, it helps to overcome the limitation
imposed to real-valued sampling by the Nyquist sampling
theorem [29]. Consequently, a sampling rate much smaller
than the frequency of the signal being observed can be used
in the signal capturing equipment.

The HackRF One SDR device used in this work along
with the GNU Radio library produces two 32 bit floating-
point values for each complex I/Q sample. Consequently,
each sample produced by the data acquisition setup is 8 bytes
long. The HackRF One device supports sample rates up to
20 MHz and can be tuned to any frequency within the range
of 1 MHz to 6 GHz. Furthermore, the device provide three
signal amplifiers, namely radio frequency (RF) power ampli-
fier (0 or 14 dB), low-noise amplifier (IF) (0 to 40 dB in 8§ dB
steps), and variable-gain amplifier (BB) (0 to 62 dB in 2 dB
steps), which can be adjusted according to the requirements
during data EM acquisition. The produced samples can be
saved by default as raw data files with .cfile file extension.
Additionally, the absolute values of the complex samples can
be stored in NumPy arrays and saved into files with .npy file
extension.

D. ELECTROMAGNETIC SIDE-CHANNEL ANALYSIS FOR
FORENSICS

Whenever an IoT device is encountered in an investigation,
it is highly likely that the device is powered-on. Most of these
devices tend to store a minimum amount of data on-board,
rendering forensic analysis of the device storage less useful.
Furthermore, the devices can be employing data encryp-
tion, which makes the retrieval of stored data impossible.
Therefore, most of the forensically-interesting information
about such IoT devices are only available when the device
is inspected alive. Turning the device off and moving it to a
forensic laboratory destroys the opportunity to acquire foren-
sic insights from the running device.

The acquisition of information related to the internal
behaviour of an IoT device through its EM radiation works
only when the device is actively running. Therefore, EM-SCA
techniques can be applied during the triage examination of
IoT devices in forensic investigations at the scene where the
device is found. Furthermore, EM-SCA techniques do not
require any physical tampering to the device being inspected,

VOLUME 9, 2021



A. P. Sayakkara, N.-A. Le-Khac: Electromagnetic Side-Channel Analysis for loT Forensics

IEEE Access

Plug-in A

Plug-in B

EMvidence Core
Plug-in C

Applying Analysis

Plug-ins HTERm D

Generating Report Plug-in E

HTTE

FIGURE 3. Major functional components of the EMvidence framework
and their involvement in the workflow of analysing an loT device. The
plug-ins that are in gray color are disabled while the others are activated.

making it forensic friendly. Under these circumstances, EM-
SCA can be considered as an ideal approach to perform IoT
forensics.

The practical use of EM-SCA in real-world IoT forensics
is obstructed by two important challenges. The first is the lack
of EM-SCA method implementations covering a sufficiently
large ecosystem of IoT devices. It is currently not possible
to perform EM-SCA in an investigation if the IoT device
type in question has not been already tested for forensic
insight-gathering, and if the software and hardware required
for such an analysis are not readily available. As new IoT
device models are entering the market rapidly, it is diffi-
cult for a single law-enforcement agency to come up with
EM-SCA implementations for all of such devices. Adding
to this problem, most digital forensic investigators lack the
required technical expertise to implement and use EM-SCA
methods for acquiring forensic insights from IoT devices.

It is agreeable that the solution to this problem is a com-
prehensive tool that provides the implementation of all the
required EM-SCA methods for a diverse collection of IoT
devices. With the need of dynamically adapting to new IoT
devices with new EM-SCA implementations, such a tool
needs to be highly extensible. The next section presents the
architecture and the implementation of a framework called
EMyvidence that aims to cater these requirements in EM-SCA
for IoT forensics.

IV. EMvidence FRAMEWORK FOR 10T FORENSICS

EMvidence! is an open-source framework, which is devel-
oped to facilitate the application of EM-SCA in digital foren-
sics [10]. It follows an extensible architecture where only the
core functionalities are included by default, such as capturing
and managing EM data. It facilitates the extension of func-
tionalities dynamically by third-party contributors. In order
to facilitate the use of the EMvidence framework in a wide
variety of environments and platforms, it is developed in
Python language using various open-source libraries. Due

1 https://github.com/asanka-code/EMvidence
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FIGURE 4. Main components of developing a plug-in for EMvidence
framework by enclosing a trained machine learning (ML) model with
EMvidence API facility.

to the use of GNU Radio library, it supports many SDR
hardware platforms for EM data acquisition.

The Figure 3 depicts the major internal components of the
EMvidence framework and their interactions. The acquisition
of EM trace data from a target device and the compilation
of analysis report are the two default functionalities provided
by EMvidence framework. Plug-ins provide various EM data
analysis capabilities individually to the framework. Mean-
while, the role of the EMvidence core is to coordinate the
data acquisition, plug-ins and the report generation sequence
from a central point. During an investigation, the forensic
analyst can acquire EM radiation of an IoT device and enable
a selection of plug-ins to engage in the data analysis. The
EMyvidence core applies the activated plug-ins to the acquired
EM data and retrieves the results produced by them. Finally,
the analysis results are handed to the report generation com-
ponent to produce a comprehensive report on the leaked
information through the EM radiation of the target device.

As it is evident from the design of the EMvidence
framework, the plug-ins hold the key capability to perform
EM-SCA on the EM radiation data of IoT devices and acquire
forensic insights from them. A plug-in consists of the imple-
mentation of a specific EM-SCA method for detecting a
known pattern from a specific IoT device or from a family
of IoT devices that uses the same SoC. Therefore, a particular
plug-in can be enabled when dealing with the IoT devices it is
designed to analyse. In addition to the forensic insight acqui-
sition, EMvidence plug-ins can be implemented to perform
other tasks such as visualising or further pre-processing of
data.

The Figure 4 depicts the key aspects of developing a
plug-in for the EMvidence framework to acquire a specific
forensic insight from an IoT device. As the first step, a spe-
cific IoT device type and the forensic insight that should be
acquired from it need to be decided. Then, the SDR hardware
setup can be used to acquire a labeled EM trace dataset
from the target IoT device representing the specific internal
behaviour of the device. The EM trace dataset presented in
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this work has already completed these initial steps of building
an EMvidence plug-in. Once the dataset is ready, the API
facility provided by the EMvidence framework can be used
to pre-process the data and train a machine learning model to
classify different labels of the dataset.

A plug-in in the EMvidence framework is basically a
compressed ZIP file that encloses a collection of files. The
trained machine learning model saved as a joblib file
is the key ingredient of the plug-in ZIP file. Furthermore,
a python script file needs to be included, which implements
some of the important call-back functions for the plug-in.
These functions are written by the plug-in developer with
the help of EMvidence API to process and classify EM data,
and produce results in a specific format. The EMvidence
framework invokes a plug-in by calling those functions in the
python script, and retrieve the results produced by the plug-in
into the frameworks core for producing final analysis report.
New plug-ins can dynamically be added to the framework as
ZIP files and removed from the framework whenever required
by the user. Currently, the EMvidence framework does not
provide a plug-in management and distribution infrastructure.
It is an important future work to implement such an infras-
tructure similar to the apt package manager for the Linux
operating system, or the pip package manager for the python
language.

Due to the dynamics of the IoT ecosystem, a limited
number of plug-ins would not be sufficient for the EMvi-
dence framework to be useful in real-world investigations.
Whenever an investigation encounters a new IoT device or a
previously studied device with a new forensic requirement,
a plug-in has to be developed to fulfill this requirement.
Developing new plug-ins is currently a slow and a challenging
task because it requires the access to a large number of
representative IoT devices for acquiring EM radiation data.
Furthermore, it is necessary for the investigators to posses
technical expertise to program and build plug-ins. This situa-
tion has caused the number of plug-ins being developed to be
low and insufficient. The lack of plug-ins for most important
IoT devices in the market needs to be addressed to make
EMvidence usable in practical 10T forensics scenarios.

V. GENERATION OF ELECTROMAGNETIC DATASET

In order to overcome the limitations of using EM-SCA to
acquire forensic insights, the facility to develop new plug-ins
for the EMvidence framework should be improved. This
work addresses this problem by providing an EM radiation
dataset along with a demonstration on how to use it for
building machine learning-based plug-ins for EMvidence.

A. CONSIDERED SMART DEVICES

When considering the deployment environment of an IoT
application, it is important to recognise that both IoT devices
and smartphones collectively play their own roles. This is
because, most IoT devices typically do not consist of rich user
interfaces to be interacted with. They tend to require a smart-
phone app, in order to provide a user interface. Therefore,
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the configuration and interaction with most IoT devices are
performed through the users’ smartphones. Due to this rea-
son, this work considers smartphones along with IoT devices
in data acquisition.

A wide variety of IoT devices demonstrate a practi-
cal forensic interest. Among this diversity of IoT devices,
there exists a large consumer base for smart hubs/gateways.
Regardless of the types of IoT devices and their man-
ufacturers, modern IoT devices tend to provide applica-
tion programming interface (API) to interact with common
smart hubs/gateways. This means, most of the activities that
occur within an IoT environment involves such intermedi-
ate devices. Due to this reason, smart hubs/gateways can
be considered as the central focus of an IoT environment.
Therefore, this work considers smart hubs/gateways for the
dataset creation.

A total of 8 main smart device types were used for the
creation of the dataset, including smart hubs/gateways — the
most popular smart hubs/gateways currently in use — and
smartphones. Two devices from each device type were used
in order to ensure the cross-device portability of the EM
data. Table 1 illustrates the technical specifications of these
devices and the software activities selected from each of
them to be included in the dataset. In addition to the main
smart devices that were the focus of the dataset, two other
supporting IoT devices were involved in the process. Those
supporting devices were controlled by some of the main smart
devices during data acquisition.

B. DATA ACQUISITION AND PRE-PROCESSING
PROCEDURE
The data acquisition procedure with the hardware settings
were mostly similar for all the devices, except for signal
capturing frequency, which differs for each DUT. The system
clock frequency of each DUT’s CPU is considered as the
information-leaking frequency for data acquisition. The other
settings, which are fixed for the entire set of considered
DUTs, are the sampling rate, bandwidth, and the gain values
for the three signal amplifiers available on the HackRF SDR
device. The sample rate and the bandwidth of the HackRF
SDR were set to 20 MHz, which is the maximum capacity
of the device. The higher the sample rate and bandwidth,
the more information is captured and stored into EM trace
files. Therefore, it was decided to use the maximum capability
of the HackRF device in terms of sample rate and bandwidth.
The signal amplification values on the HackRF device
have to be set to the optimum amounts because, too low or
too high amplification can negatively impact the quality of
EM trace data files. Having a too low amplification makes
it difficult to capture a weak EM radiation coming from a
DUT. However, an unnecessarily high signal amplification
can inevitably amplify external noise from various other
sources, cluttering the captured EM trace file. Therefore,
the amplification settings were empirically decided by trying
different settings and observing the clearness of the signal
across different devices. As a result of these empirical obser-
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TABLE 1. Technical specifications of the smart devices used to create the EM dataset.

Smart Device System-on-Chip Architecture

CPU Frequency Software Activities

Amazon Echo Show 5 MediaTek MT 8163 ARMv 8-A

1.5 GHz (4 cores) (1) asking a definition, (2) asking for time,
(3) asking to play radio, (4) controlling light-
bulb, (5) device idle, (6) device resetting,
(7) just wake up word, (8) powering off, (9)

powering on.

Amazon Echo Dot (3rd | Mediatek MT 8516 ARMyv 8-A

Gen)

1.3 GHz (4 cores) (1) asking a definition, (2) asking for time,
(3) asking to play radio, (4) controlling light-
bulb, (5) device idle, (6) device muted (7)
device resetting, (8) just wakeup word, (9)

powering on.

Marvell 88DE3006 Ar-
mada 1500 Mini Plus

Google Home ARMv 7

1.2 GHz (2 cores) (1) asking a definition, (2) asking for time,
(3) asking to play radio, (4) controlling light
bulb, (5) device idle, (6) device muted (7)
device resetting, (8) just wake-up word, (9)

powering on.

Samsung SmartThings | MCIMX6L2DVN10AB | ARMv 7-A

Hub (v2)

1 GHz (1 core) (1) controlling smart outlet, (2) device idle,
(3) device powered off, (4) device powering
on, (5) opening the app, (6) viewing arrival
sensor, (7) viewing door sensor, (8) view
motion sensor.

Apple iPhone 4S Apple AS ARMv 7-A

1 GHz (2 cores) (1) calendar app, (2) camera photo, (3) cam-
era video, (4) email app, (5) gallery app, (6)
home screen, (7) device idle, (8) phone app,

(9) SMS app, (10) web browser app.

Sony Xperia T Qualcomm Snapdragon | ARM v7-A

MSMS8260A

1.5 GHz (2 cores) (1) calendar app, (2) camera photo, (3) cam-
era video, (4) email app, (5) gallery app, (6)
home screen, (7) device idle, (8) phone app,

(9) SMS app, (10) web browser app.

Samsung Galaxy Grand | Qualcomm Snapdragon | ARMv 8-A

Prime MSM8916

1.2 GHz (4 cores) (1) audio recording, (2) camera photo, (3)
camera video, (4) email app, (5) gallery app,
(6) home screen, (7) device idle, (8) phone

app, (9) SMS app, (10) web browser app.

Nokia 4.2 Qualcomm Snapdragon | ARMv 8-A

SDM439

1.95 GHz (4 cores),
1.45 GHz (4 cores)

(1) calendar app, (2) camera photo, (3) cam-
era video, (4) email app, (5) gallery app, (6)
home screen, (7) device idle, (8) phone app,
(9) SMS app, (10) web browser app.

vations, the radio frequency power amplifier (RF) is set to
14 dB, the low noise amplifier (IF) is set to 40 dB, and the
variable-gain amplifier (BB) is set to 18 dB throughout the
experiments.

The Figure 5 illustrates the GNU Radio Companion (GRC)
software that was ran on the host computer for the EM data
acquisition. Each block in the flow graph visually represents
either a physical hardware component or a virtual element
that is necessary to deal with the EM signal data samples.
The Osmocom Source block represents the HackRF SDR
device on the flow graph where the data acquisition settings
are defined. As can be seen, the signal acquisition frequency,
bandwidth and amplifier gain settings are defied in this block.
The sample rate and the signal acquisition frequency are
defined as individual variable blocks in the flow graph, which
are referred to by other blocks. The I/Q data samples pro-
duced by the Osmocom Source block are directed to three
other blocks in the flow graph, namely the Frequency Sink,
the Waterfall Sink, and the File Sink. The Frequency Sink and
Waterfall Sink blocks are used to visualise the I/Q data stream
in real-time; this is useful for verifying that the target signal is
focused during the data acquisition. The File Sink block saves
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Options
Output Language: Python
Generate Options: QT GUI

QT GUI Frequency Sink

FFT Size: 1.024k
Center Frequency (Hz): 0 M

Bandwidth (Hz): 20M

osmocom Source
Sync: PC Clock
Number Channels: 1
Sample Rate (sps): 20M
Cho: Frequency (Hz): 1.4G
ChO: Frequency Correction (ppm): 0
command| ChO: DC Offset Mode: 0
ChO: 1Q Balance Mode: 0
ChO0: Gain Mode: False
ChO: RF Gain (dB): 14
ChO: IF Gain (dB): 40
Cho: BB Gain (dB): 18
Ch0: Bandwidth (Hz): 20M

File Sink
File: /em-trace.cfile
Unbuffered: Off
Append file: Overwrite

QT GUI Waterfall Sink
FFT Size: 1.024k

freq Center Frequency (Hz): 0

Bandwidth (Hz): 20M

Variable Variable freq
Id: samp_rate Id: centre_freq

Value: 20M Value: 1.4G bw

FIGURE 5. The GNU Radio Companion (GRC) flow graph for acquiring EM
traces. The Osmocom Source represents the configuration of the HackRF
SDR device producing 1/Q data samples. The Frequency Sink and
Waterfall Sink are used to visualise data while the File Sink write the 1/Q
data stream into a raw data file.

the I/Q data samples into a raw data file with the extension
.cfile on the host computer.

The complete data acquisition and pre-processing pipeline
for a single DUT is illustrated in the Figure 6. The first step is
to prepare the hardware setup consisting of the DUT, the SDR
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Host
Computer

DUT

(3) Selecting
Device Activities

>
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(4) EM Trace Acquisition

(2) Identifying
Frequency and Position

(6) Training ML Models

(5) HDF5 Formatting

FIGURE 6. The sequence of main steps followed to produce EM dataset.
Using the hardware setup, the information leaking position and
frequency is identified. Then, the specific activities of each device to be
recorded is shortlisted. Later, the EM traces for each activity are packaged
using the HDF5 format for distribution. This dataset can be finally used to
train and test ML models.
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FIGURE 7. The power spectral density of the EM radiation from Amazon
Echo Dot device when it is in idle state and when it was awaken by
calling the wake-up word “Alexa”. A drastic increase in the observed
signal is visible from the device is awaken.

equipment with near-field H-loop antenna, and the host com-
puter. The second step is to identify the information-leaking
frequency and the optimum antenna position for the target
DUT. Since this work considers the system clock frequency
of the DUTs as the information-leaking frequency, this value
is already known. However, the optimum positioning of the
antenna over the DUT needs to be decided empirically by
moving the antenna over the device while plotting data in real-
time. The third step is the decision of target device activities to
be included in the dataset. For each DUT, the set of activities
were defined based on the type of the device and its real-world
application scenarios.

Figure 7 depicts the PSD of the EM radiation captured
from Amazon Echo Dot device while it was on two different
internal states: device idle and device awaken. In the first
state, the device is powered on and running, but not doing
any specific interactive task (it can be running certain tasks
in the background). In the second state, the device is woken
up by calling the wake-up word, “Alexa”. As it is evident
from the PSD plot that the power of the observed signal on the
clock frequency of the Amazon Echo Dot device considerably
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FIGURE 8. The power spectral density of the EM radiation from Samsung
SmartThings Hub device when it was in powered off state and when it
was being powered on by switching the power supply. A drastic increase
in the observed signal is visible when the device was powered on.
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FIGURE 9. Histograms of two EM trace files representing two software
behaviour of Nokia 4.2 smartphone. The distributions are not Gaussian
for the EM trace data.

increased when switching from the idle state to the awaken
state. Similarly, Figure 8 illustrates the PSD plots of the
EM radiation observed at the clock frequency of Samsung
SmartThings Hub device when it was powered off and being
powered on. Similar to the previous device, the signal strength
drastically increases in Samsung SmartThings Hub when it
is powered on. Similar observations were made on the other
considered smart devices for the EM dataset. The observation
of a considerable increase in the observed EM signal at
a particular frequency confirms that the observed signal is
indeed originating from the target device.

In the fourth step, an EM trace was acquired for a pre-
defined period of time while the device was set to run a
particular desired activity, i.e., if there are n number of target
device activities, an n number of EM traces were acquired
separately for that device. Finally, the acquired EM trace files
are packaged together in a hierarchical structure and stored
for later use as the fifth step. Further details of the format of
the dataset storage is described in the next section. When the
EM dataset is ready, it can be used to train and test various
machine learning models to identify device behaviour.
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The distribution of the acquired EM data samples are not
Gaussian as can be observed from histograms (see Figure 9).
In order to ensure that the collection of EM trace files
from each device was conducted correctly, a Wilcoxon rank
test [30] was conducted among the EM trace files of each
device. It can be concluded with a 95% confidence level
(p-value > 0.05) that the samples of different EM trace files
taken from the same device type has the same distribution.

C. STORAGE AND AVAILABILITY OF THE DATASET

In order to properly process EM trace files later, it is necessary
to keep track of the settings of the SDR hardware during EM
data acquisition. In addition to the SDR hardware settings of
the raw I/Q trace files, any pre-processing settings such as
the frequency domain conversion using STFT involves extra
variables that should be stored as metadata. Furthermore,
EM datasets can grow into a large collection that consists
of hundreds of files and several gigabytes of data in size.
Therefore, organisation and storage of such EM data files
with the metadata associated with them is a challenge. For this
purpose, this work uses hierarchical data format 5 (HDFS5)
standard to store a large collection of EM datasets represent-
ing various smart devices and their activities along with the
EM trace metadata [21].

The Figure 10 depicts the structure of the dataset in
HDFS5 format. Under the root of the HDF5 hierarchy, there
are two separate HDF5 categories for the IoT devices and
smartphones. Under each of these device categories, further
HDFS5 subcategories are defined for the particular device
models, e.g., Amazon Echo Dot, Google Home, etc. For each
device model HDFS5 subcategory, the EM traces representing
the device’s activities are added as HDF5 datasets. The entire
HDFS5 file is about 53 GB in size. When compressed using
gzip (which is a command line-based utility program for
Unix-like platforms) with a compression level of 6, the entire
dataset file can be reduced to around 12 GB in size. Therefore,
the compressed HDF5 dataset can be distributed, stored, and
processed on a reasonably-resourced computer.

The dataset is available in the public domain, which can be
downloaded along with instructions to use it .

VI. MACHINE LEARNING ON THE DATASET

The EM trace datasets acquired from smart devices have
to be useful for the research and development of methods
for acquiring forensic insights. Among potential approaches,
the use of machine learning to identify known patterns in the
EM radiation is at the foremost. The objective of this section
is to demonstrate how to train machine learning models in
order to classify device behaviours using the EM dataset. A
wide variety of machine learning techniques are applicable
for this purpose. As it is impossible to test all kinds of
machine learning algorithms, it was decided to use 3 machine
learning algorithms: multi-layer perceptron (MLP), random
forest (RF), and convolutional neural network (CNN). MLP

2http://aseados.ucd.ie/datasets/EMSCA
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and RF have already shown to be effective in classifying
EM radiation data in previous work [5] and [31]. Therefore,
they were selected to test the usefulness of the EM dataset
produced in this work. In contrast to MLPs, CNNs have
gained popularity in recent times for complex classification
problems with highly dimensional data. Therefore, CNN was
selected as the third machine learning algorithm for the eval-
uation with the dataset.

A. PREPARATION FOR MACHINE LEARNING

In order to be used with machine learning algorithms, the EM
trace data need to be pre-processed to extract features.
When EM side-channel radiation is generated from a DUT,
the information of the internal device behaviour can leak
through multiple EM frequencies around the system clock
frequency of the DUT. Due to external noise sources, the cap-
tured time-domain signal buries the slight variations of the
signal that are vital for accurate detection of device behaviour.
In contrast, the frequency domain of a signal separates indi-
vidual frequency components of the captured EM radiation,
which allows the information-leaking frequency components
to stand out. Therefore, it is more effective to convert the orig-
inal time-domain signal into frequency domain to generate
the feature vector. This can be done using short time Fourier
Transform (STFT).

The time domain EM trace files were applied to STFT
function with a window size, i.e., FFT size, of 2048 1/Q
samples and an overlap of 256 1/Q samples. This means,
each STFT sliding window has a 12% overlap. For each
time domain EM trace file, the STFT operation produces
a two-dimensional dataset, where the frequency dimen-
sion has 2048 columns (frequency channels). The time
dimension has time points each representing a collection
of 2048 samples in the original time domain signal. Each
STFT-converted dataset bears the label of the original smart
device’s software activity. For example, for the Amazon
Echo Dot device, the STFT-converted datasets bear the labels
asking-definition, asking-time, playing-radio, control-lamp,
device-idle, device-muted, device-resetting, device-awaken,
and powering-on. Each of these labels is a class in the
machine learning classification. Furthermore, the frequency
dimension of each STFT-converted trace is considered as
the feature vector for the machine learning algorithm, which
consists of 2048 features.

B. METRICS FOR EVALUATING MODELS
When evaluating machine learning models, multiple accuracy
metrics can be used. Among them, precision, recall, and F1-
score are the most common. These measures are based on
the number of true positive (TP), true negative (TN), false
positive (FP), and the false negative (FN) predictions made
by a trained model on a testing dataset.

The Equation 1 illustrates the calculation of precision of
a machine learning model. It quantifies the accurate positive
predictions made by a model in contrast to the total number
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FIGURE 10. The structure of the EM dataset in HDF5 format. The HDFS5 file consists of the EM trace files of smartphones
and loT devices along with their metadata in a hierarchical tree-like structure. The entire EM dataset is stored as a
compressed single HDFS5 file for efficient storage, distribution, and processing.
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FIGURE 11. Learning curve for the MLP model that was trained using the
EM trace data of Apple iPhone 4S device.

of positive predictions it has made.

TP
TP + FP

The Equation 2 illustrates the calculation of recall of a
machine learning model. The recall quantifies the ratio of
accurate positive predictions made by a model in contrast to
the total number of actual positive samples available in the
testing dataset.

precision =

ey

TP
TP + FN

The two metrics, precision and recall attempts to quantify
two different aspects of a trained machine learning model.
By combining the two measures to calculate a harmonic mean
of the values, the F1-score is defined as illustrated in the
Equation 3.

recall =

(@)

3

Fi =2 x (precision X recall)

precision + recall
When reporting the performance of a trained machine
learning model, a classification report is usually used to illus-

trate all the important measures for each class in the testing
data. The classification report shows the precision, recall
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and F1-score for each class in the testing data individually.
Furthermore, it shows macro average (the mean values of
each measure for each class), the weighted average (the mean
values of each measure calculated by weighting them with the
support values), and the final accuracy, which is calculated as
shown in the Equation 4. As it is evident, the final accuracy
measure shows a ratio between all the correct predictions
made (both positive and negative) against the total number
of samples in the testing dataset.

TP + TN
TP+ TN + FP + FN

Accuracy = 4)
In evaluations of machine learning models, two types of
visualisations are used to better illustrate the outcome: con-
fusion matrix and classification report. In a confusion matrix,
the column indexes are representing the predicted labels of
the classes while the row indexes are representing the true
labels of the classes. Every element in the matrix shows the
number of samples with a true label that got classified as a
particular label. Meanwhile, classification report illustrates
the precision, recall, and the F1-score values for each class of
the testing data, and the accuracy for the entire testing data.
The number of samples that ware used from each class for the
testing is depicted by the support column. Macro average in
a classification report represents the average of each of those
parameters for all the classes. Similarly, weighted average
represents the average of the parameters calculated by taking
the available number of support for each class into account.

C. MULTI-LAYER PERCEPTRON

A multi-layer perceptron neural network was trained per each
device for classifying its software behaviour as captured by
EM trace files. The Table 2 illustrates the architecture of the
MLP neural networks that were used to train classifiers. The
input layer consists of 2048 features, while the number of
output layer nodes depends on the number of classes for each
device type. There are 6 hidden layers in this network where
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FIGURE 12. The PSD plots of the EM trace data of 9 internal behaviour classes of the Amazon Echo Dot device that were used to train

classifiers using deep neural networks and random forest.

TABLE 2. The hypterparameters of the deep neural network architecture
for devices with data of 10 internal software behaviours.

Layer Type Output Shape | # of Parameters
Dense (ReLU) 1400 2868600
Dense (ReLU) 800 1120800
Dense (ReLU) 500 400500
Dense (ReLU) 200 100200
Dense (ReLU) 100 20100

Dense (Softmax) 10 1010
Total Parameters 4,511,210

I 1000
- 800
- 600

- 400

True Labels

Predlcted Labels

FIGURE 13. The confusion matrix of the classifier built using deep neural
networks to distinguish between 9 device activity classes of the Amazon
Echo Dot device.

5 of them use ReLU activation function and the 6th layer uses
Softmax activation function. From each class, 10,000 samples
were used for each deep learning model, where training and
testing data were separated in 9:1 ratio. Each model was
trained for 5 epochs (see Figure 11) with the sparse cate-
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TABLE 3. Classification report of the muti-layer perceptron model for
Amazon Echo Dot device.

Class Precision | Recall | Fl-score | Support

asking-definition (0) 1.00 1.00 1.00 996
asking-time (1) 0.98 1.00 0.99 1006
playing-radio (2) 1.00 1.00 1.00 980
control-lamp (3) 1.00 1.00 1.00 1001
device-idle (4) 1.00 0.99 1.00 1007
device-muted (5) 1.00 1.00 1.00 983
device-resetting (6) 1.00 1.00 1.00 993
device-awaken (7) 1.00 1.00 1.00 999
powering-on (8) 1.00 1.00 1.00 1035
Macro Avg 1.00 1.00 1.00 9000
Weighted Avg 1.00 1.00 1.00 9000
Accuracy 1.00 9000

gorical cross-entropy loss function. From the total training
samples of all the classes, a validation data set was created in
each epoch by randomly selecting a 10% of the training data.
For developing and testing deep neural networks, the Keras
API, provided by the Tensorflow library, was used. The PSD
plots of the EM traces from Amazon Echo Dot device that
were used to train a machine learning models are shown in
the Figure 12. The Figure 13 illustrates the confusion matrix
of the machine learning classifier to distinguish between
9 different classes of the Amazon Echo Dot device. This
classifier achieved an accuracy of 99.68% on the test data.
The Table 3 shows the classification report of the model.

D. RANDOM FOREST

A random forest classifier works by aggregating the results of
a large collection of decision trees. When developing random
forest classifiers for the devices, the same data pre-processing
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FIGURE 14. The confusion matrix of the classifier build using random
forest to distinguish between 9 device activity classes of the Amazon

Echo Dot device.

TABLE 4. Classification report of the Random Forest model for Amazon

Echo Dot device.
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FIGURE 15. The confusion matrix of the classifier build using CNN to
distinguish between 9 device activity classes of the Amazon Echo Dot

device.

TABLE 5. The hyper-parameters of the convolutional neural network
architecture for devices with data of 10 internal software behaviours.

Class Precision | Recall | Fl-score | Support
asking-definition (0) 0.82 0.80 0.81 996
asking-time (1) 0.92 0.91 0.91 1006
playing-radio (2) 0.95 0.97 0.96 980
control-lamp (3) 0.81 0.74 0.78 1001
device-idle (4) 0.90 0.92 091 1007
device-muted (5) 0.92 0.96 0.94 983
device-resetting (6) 0.91 0.95 0.93 993
device-awaken (7) 0.89 0.86 0.87 999
powering-on (8) 0.92 0.94 0.93 1035
Macro Avg 0.89 0.89 0.89 9000
Weighted Avg 0.89 0.89 0.89 9000
Accuracy 0.89 9000

procedure was followed, hence the feature vector consisted
of 2048 features. The scikit-learn machine learning library
was used to implement and test the random forest classifiers.
Through empirical trials, the random forest classifiers were
designed to have 5 estimators and a maximum depth of 10.
Similar to the case of MLP, 10,000 samples from each class
were taken from the dataset and were separated by 9:1 ratio
as training and testing data. The Figure 14 illustrates the
confusion matrix of the random forest classifier designed to
distinguish between 9 different device behaviour classes of
the Amazon Echo Dot device. The classifier for this device
achieved an accuracy of 89.4% on test data. The Table 4
shows the classification report of the model.

E. CONVOLUTIONAL NEURAL NETWORK

A convolutional neural network (CNN) differs from the tra-
ditional multi-layer perceptron due to the use of one or
many special layers called convolutions and pooling. During
the training phase, convolutional layers learn their kernel
parameters, while pooling layers help to drop the unnecessary
features captured by the convolutional layers. The Table 5
illustrates the architecture of CNN used in this work to train
and test classifiers using the EM trace dataset. It consists of,
most importantly, two convolutional layers and two dense
layers, which have trainable parameters. The two convolu-
tional layers and the intermediate dense layer uses ReLU
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Layer Type Output Shape | # of Parameters
Conv1D (ReLU) | (None, 1021, 32) 288
MaxPooling1D (None, 255, 32) 0
Conv1D (ReLU) (None, 62, 64) 16448
MaxPooling1D (None, 15, 64) 0
Dropout (None, 15, 64) 0
Flatten (None, 960) 0
Dense (ReLLU) (None, 64) 61504
Dropout (None, 64) 0
Dense (Softmax) (None, 9) 585
Total Parameters 78,825

TABLE 6. Classification report of the Convolutional Neural Network
model for Amazon Echo Dot device.

Class Precision | Recall | Fl-score | Support
asking-definition (0) 0.85 0.98 0.91 996
asking-time (1) 0.96 0.97 0.97 1006
playing-radio (2) 1.00 0.96 0.98 980
control-lamp (3) 0.98 0.94 0.96 1001
device-idle (4) 1.00 0.96 0.98 1007
device-muted (5) 0.96 0.98 0.97 983
device-resetting (6) 1.00 0.97 0.99 993
device-awaken (7) 1.00 0.95 0.98 999
powering-on (8) 1.00 0.99 1.00 1035
Macro Avg 0.97 0.97 0.97 9000
Weighted Avg 0.97 0.97 0.97 9000
Accuracy 0.97 9000

activation function, while the last dense layer uses Softmax
activation. Similar to the MLP models, unique CNN models
were trained using 10,000 samples from each class for every
device in the dataset. The Figure 15 illustrates the confusion
matrix of the CNN model trained using Amazon Echo Dot
device to detect its 9 device activities, which are included in
the EM dataset. The CNN classifier for this device achieved
an accuracy of 96.89% on the test data. The Table 6 shows
the classification report of the model.

F. SUMMARY OF THE RESULTS

The length of the feature vector, i.e., 2048, and the size
of the dataset of this work has made the use of n-fold
cross-validation challenging. It is because, the computational
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TABLE 7. The summary of classifier performance. The best performing
classifier is highlighted in bold text for each device model.

Device Model Machine Learning Technique Accuracy
Multi-layer Perceptron 99.68 %
Amazon Echo Dot Random Forrest 89.40%
Convolutional Neural Network 96.89%
Multi-layer Perceptron 99.66 %
Amazon Echo Show 5 Random Forrest 91.64%
Convolutional Neural Network 98.39%
Multi-layer Perceptron 99.76 %
Google Home Random Forrest 82.95%
Convolutional Neural Network 99.17%
Multi-layer Perceptron 99.96 %
Samsung SmartThings Random Forrest 85.76%
Convolutional Neural Network 97.12%
Multi-layer Perceptron 98.16%
Apple iPhone 4S Random Forrest 98.90%
Convolutional Neural Network 99.36%
Multi-layer Perceptron 99.62%
Sony Xperia T Random Forrest 98.68%
Convolutional Neural Network 99.67 %
Multi-layer Perceptron 99.63%
Galaxy Grand Prime Random Forrest 99.40%
Convolutional Neural Network 99.71%
Multi-layer Perceptron 99.32%
Nokia 4.2 Random Forrest 98.36%
Convolutional Neural Network 99.45%

overhead is too high for this type of data on n-fold cross-
validation, causing the experiments to take a prolonged period
of time. However, due to the use of a large number of training
and testing samples, and also due to the random shuffling of
samples, the fixed train and test data split can be considered
as a sufficient approximation in the evaluation.

The summary of the results of the machine learning models
that were trained to detect activities of the smartphones and
IoT devices is shown in the Table 7. In overall, the three
machine learning methods — multi-layer perceptron, random
forest, and convolutional neural networks — perform well in
classifying device activities. Various other machine learning
methods may be used for the purpose based on the specific
requirements of an IoT forensics scenario.

The availability of EM datasets and the possibility of build-
ing machine learning models to accurately classify different
IoT device behaviors is evident from the evaluation results.
However, it is necessary to be able to use such trained models
in real-world digital forensic scenarios. For this purpose,
tools, such as the EMvidence framework, should incorporate
the capability to acquire forensic insights with the assis-
tance of machine learning algorithms. This can be done on
the EMvidence framework by developing plug-ins by third
parties for acquiring specific forensic insights from specific
IoT devices. A large collection of such plug-ins can enable
investigators to use EMvidence framework across a diverse
ecosystem of IoT devices.

VIi. CONCLUSION AND FUTURE WORK

While EM-SCA offers a promising opportunity to the field
of IoT forensics, the lack of tools that can tackle the diversity
and the rapid changes in the IoT system obstructs its practi-
cal use. Highlighting this challenge, this work presented an
approach to mitigate it by enabling IoT forensics community
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to collaboratively develop and share EM-SCA forensic capa-
bilities. This is achieved by creating independent plug-ins for
the open-source EMvidence framework, where each plug-in
encloses a machine learning model trained to detect a specific
forensic insight from a specific type of IoT devices.

For developing plug-ins for the EMvidence framework,
the developers should have access to IoT devices, which
can facilitate the acquisition of EM radiation. This work
further facilitated this requirement by providing a rich EM
side-channel radiation dataset representing a large collection
of IoT devices. The potential usage of the dataset for devel-
oping plug-ins for EMvidence is demonstrated by developing
and testing machine learning models, which includes both
deep neural networks and random forests. The contributions
of this work open up the door to apply EM-SCA in practical
IoT forensics domains and furthermore, encourages further
research into the topic with the help of the presented dataset
and the framework.

A. FUTURE WORK

When training machine learning models to detect specific
activities of a computing systems, it iS necessary to ensure
that the models are portable across all devices of the same
type. For example, a machine learning model trained to detect
software activities of an Amazon Echo Dot device needs to
be compatible with any Amazon Echo Dot device found in
forensic investigations. Although multiple existing research
indicate that EM radiation patterns of the same device model
or component are mostly consistent, it is necessary for future
research to explore the cross-device portability of machine
learning models [32], [33].

The devices that are powered by batteries have to consume
energy wisely for a better endurance. Therefore, modern SoC
processors that are included in smartphones and IoT devices
tend to use various techniques for performance improve-
ment while being efficient at energy consumption. One such
common technique is the dynamic voltage-frequency scaling
(DVES) [34] where the CPU cores of a processor dynami-
cally adjusts its clock frequency according to the workload;
the higher the workload, the faster the CPU cores are run-
ning. Another techniques is the use of multiple CPU core
clusters that are fixed to run at different clock frequen-
cies, e.g., ARM’s big.LITTLE technology [35]. Depending
on the workload, program threads are allocated to different
sets of CPU clusters; lower workloads call low-frequency
CPU clusters to operation, while higher workloads force the
high-frequency CPU clusters to function. Since EM-SCA
attacks generally rely on the system clock frequency as the
information-leaking frequency to observe, such frequency
dynamics can cause the attacker to miss vital information-
leaking signals. Therefore, it is necessary for future research
to explore suitable methods to adjust to such dynamics.
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