
2018 International Conference on Advances in ICT for Emerging Regions (ICTer) : 343 - 350

978-1-5386-7352-2/18/$31.00 ©2018 IEEE

Optimizing Concurrent-Query Execution in
Wireless Sensor Networks

Dilini A. Muthumala#1, Udara S. Liyanage#2, Asanka P. Sayakkara#3, Jeevani S. Goonetillake#4

#University of Colombo School of Computing,

No. 35, Reid Avenue, Colombo 7, Sri Lanka
diliniasanga@gmail.com
udaraliyanage@gmail.com
asanka@scorelab.org
jsg@ucsc.cmb.ac.lk

Abstract— Due to the underlying complexity of wireless sensor
networks in acquiring data, database abstractions are used in
many real-world WSN applications utilizing SQL-like queries.
As it is the trend nowadays to share a WSN among multiple
users, concurrent query execution has become an important
concern in the domain. Since WSN nodes are extremely energy
constrained entities, and query processing and query results
communication consumes a significant amount of energy, it is
necessary to perform optimizations to the concurrent query
execution in WSNs. While many previous researches have
attempted to address this problem, they have mostly assumed
WSNs which consists of a single base station shared among
multiple users. However, the existing concurrent query
optimization solutions are not effective for a WSN with multiple
base stations. In this paper, we present a novel query
optimization strategy for the database abstraction of WSNs
which consists with multiple users. The evaluation results show
that the suggested scheme significantly decreases the energy
usage not only in single base station scenarios but also in
multiple-base station scenarios.

Keywords— WSN, Database Abstractions, Energy,
Optimization

I. INTRODUCTION

Wireless sensor networks (WSN) consist of groups of
smart sensor devices which form a wireless network. WSNs
are mainly used for monitoring certain environmental
conditions, such as a monitoring wildlife, observing severe
weather conditions and collecting data inside active
volcanoes [4], [10]. Due to the nature of such WSN
applications, WSN nodes may have to be used in large
numbers. Due to the nature of these applications, once
deployed, each WSN node has to operate as longer life time
as possible before they run out of their battery power.
Therefore, WSN nodes are manufactured with limited
resource such as low processing capabilities, limited
memory capacities and batteries to ensure a longer
unattended operational life-time [1].

Development of software applications for resource
constrained devices such as WSN nodes requires low-level
programming languages and tools which can only be
handled by experienced computer scientists. However, in
real-world applications, the users of such WSN applications
are normally biologists, environmental researchers, farmers
and not computer scientists. The challenge of handling
resource constrained devices enforce limitation on real-
world WSN users demanding better middleware for WSN
applications. Provision of different abstraction layers for

WSN is such a solution where the complexities of the
network is hidden under some user-friendly and familiar
interface. One such widely used abstraction for WSN is
database abstractions such as TinyDB [3] and TikiriDB [2]
where the whole network is emulated as a database for the
end users. The end-users are able to interact with WSN by
issuing SQL-like declarative queries in order to obtain real-
time data from the network. The distinct feature in this type
of query is that the execution period and sample period can
be specified within the query depending on the user
requirement.

Fig. 1. The distribution of the energy consumption of a typical sensor
node for the three tasks processing (15%-30%), sensing (6%-20%) and
communication (about 60%) [7], [8].

As the capabilities of WSNs such as processing power,

memory and onboard sensor types are getting improved,
more and more people get attracted to use WSNs.
However, due to the high cost involved in deploying a
WSN, not everyone who wants to use a WSN is actually
able to do so. As a solution to this problem, sharing of a
WSN among multiple users has been suggested [2]. The
underlying concept here is that once a WSN is deployed,
different users are able to subscribe and get themselves
connected to the network may be using fixed base stations
or even through their laptops which could in turn be
considered as base stations to obtain the data of their
interest. Such WSNs can contain single or multiple base
stations from any of which a user can inject a query to the
network and due to the flexibility of getting connected to
the network, connection among the base stations may not
exist as shown in Figure 2. Due to such possibilities, in a
particular time instance of the network, multiple queries
can be running on a node creating concurrent query
execution scenarios. Under such concurrent query
situation, the database abstraction layer of a WSN can
result in inefficiencies from energy point of view since the
same data may be repeatedly sensed or communicated. In

Authorized licensed use limited to: University College Dublin. Downloaded on July 18,2020 at 22:15:24 UTC from IEEE Xplore. Restrictions apply.

344 Optimizing Concurrent-Query Execution in Wireless Sensor Networks

27th - 28th September 2018 2018 International Conference on Advances in ICT for Emerging Regions (ICTer)

the following subsection, these issues are highlighted and
thus we consider that the energy can be saved by
optimizing concurrent query execution. Here the expected
optimization is the minimization of sensing and
communication cost.

A. Issues in concurrent query execution

As the scenario shown in Figure 2, multiple users are
connected to the WSN via multiple base stations to acquire
data from the network by issuing different queries. Four
queries are issued by four different users at the same time
which are named as Query-1, Query-2, Query-3 and Query-
4.

Query-1

SELECT temp
FROM sensors
SAMPLE PERIOD 1s;

Query-2

SELECT temp
FROM sensors
SAMPLE PERIOD 5s;

Query-3

SELECT temp
FROM sensors
SAMPLE PERIOD 10s;

Query-4

SELECT temp
FROM sensors
SAMPLE PERIOD 5s;

As Figure 2 depicts, Query-1 and 2 are issued from the
base station 1 by two different users while Query-3 and
Query-4 are issued by two other users from base station 2.
Even though the first two queries go through same base
station, they are transmitted as two query packets two the
network. Every intermediate packet forwarder should
perform the transmission of two query packets individually
under such a situation. Additionally, every sensor node of
the network has to receive the two packets, process them
individually and transmit their resulting data packets to the
base station 1 separately. The base station 1 routes each
resulting data packet to the relevant receiving end user.
Even though both queries are originated from the same base
station, separate treatment for the queries results in
unnecessary packet transmissions between a particular
sensor node and a base station. Since the cost for packet
transmission is one of the highest energy consuming task on
a WSN (Figure 1), this situation results in significant
drainage of batteries on each node.

Meanwhile, Query-3 and Query-4 issued from base
station 2 should also traverse through the network to reach
all the sensor nodes to get executed for acquiring data.
Consider a particular sensor node which has already
received Query-1 and 2 separately which make the node to
access temperature sensor on board periodically to cater the
two queries. Note that a sensor reading acquired for Query-
1 will not be used as a data for the Query-2 which gets
acquired separately. The reception of Query-3 requires the

node to access the same temperate sensor on board for a
third time. Since each of these queries are treated
separately, the node has to access temperature sensor
multiple times for executing Query-1, 2, 3 and 4 when they
all are running on a node concurrently. Such an
uncoordinated access to the sensors on a node drastically
consume the energy of the node decreasing the life-time
of the network.

Fig. 2. A scenario where four users insert queries into the shared WSN at
different times which gets executed concurrently at the nodes. At
10.20am in the network, a particular node will be running all the four
queries concurrently as four separate threads.

The aforementioned scenario illustrates the negative

effect of executing concurrent queries on WSN nodes
without optimization under database abstractions having
multiple base stations. Even though previous researches
have attempted to address similar issues, such solutions
are unable to handle the problem effectively under
multiple base station scenarios. To address this problem,
this paper presents a novel concurrent- query optimization
mechanism that not only works on single-base station-
WSNs, but also on multiple base station-WSNs. The aim
of this optimization scheme is to reduce the energy spent
on communication, sensing and processing operations,
performed by sensor motes when processing queries. The
contributions of this research are as follows:

• We designed, implemented and evaluated an optimal
way to process concurrent queries.

• This new optimization scheme can be applied not
only to single-base station-WSNs, but also to
multiple-base station-WSNs. To the best of our
knowledge, this is the first optimization scheme
which handles both of these cases.

• We have proved using our evaluation that the
proposed approach can bring benefits by saving costs
which are caused by communication and sensing
operations.

The rest of the paper is organized as follows. In Section
II, we present our proposed optimization mechanism for
con- current query execution on WSNs. Section III
evaluates the suggested optimization mechanism. We
present the related research work of this problem domain
in Section IV and then finally concludes the paper in
Section V.

II. OPTIMIZATION OF CONCURRENT QUERY EXECUTION

When designing our optimized concurrent query execution
strategy for database abstraction layer of WSNs to reduce the
energy wastage on communication, processing and sensing
stages of the network, we considered two potential end points
where we can perform the optimization. Those two end-

Authorized licensed use limited to: University College Dublin. Downloaded on July 18,2020 at 22:15:24 UTC from IEEE Xplore. Restrictions apply.

Dilini A. Muthumala, Udara S. Liyanage, Asanka P. Sayakkara, Jeevani S. Goonetillake 345

2018 International Conference on Advances in ICT for Emerging Regions (ICTer) 27th - 28th September 2018

points are namely, base station and sensor nodes. The base
station is responsible for accepting multiple queries from
multiple users which are injected to the network. Therefore, a
concurrent query optimization needs to be performed at a
particular base station. However, due to the existence of
multiple base stations, each sensor node in the network can
receive multiple similar kind of queries to be executed
concurrently which are originated from different base
stations. Therefore, an optimization at the base station is also
necessary to achieve a higher level of efficiency.

There are two different types of benefits we achieve by
designing optimizations at the two end points in the
network.

1) Base station level optimization:

The objective of the base station-level optimizer is to
minimize, if not possible to prevent, redundant
concurrent queries from getting executed by sensor
nodes in the network. From eliminating or
minimizing redundant query insertion into the WSN,
the base station-optimizer expects to reduce mainly
the communication cost, sensing cost and processing
cost which are spent by sensor nodes on query
execution.

2) Node level optimization:

A node-level optimization is introduced to handle
possible redundant queries posed from different base
stations. The objective is to reduce the consumption
of memory and processing power of each node whilst
concurrent query execution.

In the following subsections, we describe our concurrent
query execution strategies in both at the base station level
and the sensor node level.

A. Optimizations at base station

The base station-level optimizer attempts to satisfy new
query submissions from the result stream of the queries
which have been inserted to the WSN by the base station
previously and are still being executed. Upon arrival of a
new query, the base station will check which of the
attributes are satisfiable from the result-stream that is
already coming in to the base station. A certain attribute is
satisfiable, if the base station is already acquiring the same
attribute at a rate either equal to or faster than the
SAMPLE PERIOD of the new query.

Figure 3 depicts the algorithm utilized at each base station
of the network to generate a new query after processing
multiple queries received to the base station from multiple
users. There are an infinite number of possible scenarios
which a base can encounter, upon arrival of a new query.
However, three categories can be identified to which any
possible scenario would exclusively belong as given below.

The new query q is,

� Fully Satisfiable
� Partially Satisfiable
� Not Satisfiable at all

To demonstrate the algorithm shown in Figure 3, we con-
sider one example from each category and explain how the
algorithm handles it.

1.The new query is fully satisfiable: Assume the following
scenario. A user inserts Query-4 from a certain base station;
at the same time, another user inserts Query-5 from the
same base station. Notice that Query-4 already has
demanded Temperature at a rate of one second which can be
used to satisfy Query-5 as it demands the same attribute
(temperature) at the same rate (one second). As such, the
Base Station- level Optimizer will prevent the insertion of
Query-5, with the following expectations.

Fig. 3. Base station-level optimizer algorithm.

The expected outcomes are three-folds: (1) Reduction in
communication cost: Since Query-5 does not get
inserted in to the WSN, query propagation cost would be
saved. Furthermore, since Query-5 would not send any
results, result- propagation cost too will be saved. (2)
Reduction in sensing cost: Since Query-5 does not get
executed in sensor nodes, it would not cause any sensory
data acquisitions. (3) Reduction in processing cost: Query-
5 does not get processed in the network, thus would save
processing energy of sensor nodes.

Query-4
SELECT temp,
humid FROM
sensors SAMPLE
PERIOD 1s;

Query-5

SELECT temp
FROM sensors
SAMPLE PERIOD 1s;

2.The new query is partially satisfiable: The scenario in
consideration is as follows. A user inserts Query-6 from a
certain base station; at the same time, another user inserts
Query-7 from the same base station. Since Query-7 requests
more attributes (Humidity) than the Query-6, the base
station has to send a request to the WSN, demanding for the
additional data. However, since Temperature is already

Authorized licensed use limited to: University College Dublin. Downloaded on July 18,2020 at 22:15:24 UTC from IEEE Xplore. Restrictions apply.

346 Optimizing Concurrent-Query Execution in Wireless Sensor Networks

27th - 28th September 2018 2018 International Conference on Advances in ICT for Emerging Regions (ICTer)

acquired at one- second rate, the base station can satisfy a
part of the query. In a situation like this, the base station will
insert the part of the Query-7 which is unsatisfiable to the
WSN.

The expected outcomes are three folds: (1) Reduction in
communication cost: Since both the queries are

originating from the same base station, and they demand
data at the same rate, sending only one packet every
second over to the base station would suffice to satisfy both
the queries. From doing this communication cost is
expected to be reduced. (2) Reduction in sensing cost:
Since the sensor node would share temperature readings
among the two queries, sensing cost would be reduced. (3)
Reduction in processing cost: Since only a part of the
Query-7 is get inserted into the WSN, processing energy
spent by sensor nodes are expected to be reduced.

Query-6

SELECT temp
FROM sensors
SAMPLE PERIOD 1s;

Query-7

SELECT temp,
humid FROM
sensors SAMPLE
PERIOD 1s;

3.The new query is not satisfiable at all: Consider the
following scenario. A user inserts Query-8 from a certain
base station; at the same time, another user inserts Query-9
from the same base station. In this scenario, the queries
request different attributes: one query requests temperature
whilst the other requests humidity. In a situation similar to
this one, the Base Station-level Optimizer cannot satisfy one
query from the other; neither fully nor partially. As such, it
will insert Query-9 in to the WSN..

However, the node takes advantage of the fact that both
the queries are originating from the same base station.
Rather than sending two packets, one for Query-8 and
another for Query-9 over to the same base station, the node
will put the data demanded by Query-8 and Query-9 in one
packet, and send to the Base Station. Using the received
aggregated packet, the optimizer at the base station takes
care of generating two separate packets to serve the two
users with relevant data requested.

Query-8

SELECT temp
FROM sensors
SAMPLE PERIOD 1s;

Query-9

SELECT humid
FROM sensors
SAMPLE PERIOD 1s;

B. Optimizations at each node

A Node-level Optimization component is introduced be-
cause there is no other entity in a WSN that can handle
possible redundancies among queries which are coming

from different base stations. However, since a sensor mote
is an extremely resource-constrained entity, pushing an
optimization component into such an entity might not
sound as a wise decision. However, this research
introduces a node-level optimization component with the
hope of saving communication and sensing energy (which
are the most energy- hungry operators), at the cost of
added-processing-energy (which is less energy-
consuming, compared to communication and sensing
operations) as shown in Figure 1. The proposed node-level
optimizer utilizes a technique for improving the energy
efficiency on the network which we describe using the
following example.

Query-10

SELECT temp,
humid FROM
sensors SAMPLE
PERIOD 1s;

Query-11

SELECT temp
FROM sensors
SAMPLE PERIOD 1s;

A certain node receives two queries at the same time:
Query-10 which is sent from Base Station-1 and Query-11
which is sent from Base Station-2. Existing systems
such as TikiriDB assigns a separate thread for each of the
above two queries. The thread which process Query-10
will sense temperature and humidity every second. The
other thread will sense Temperature every second. In
contrast, the node- level optimizer will not do separate
sensing operations for each query. Rather, it will sense
temperature only once, every second, and share the sensed
value among the two queries. This will eliminate a
redundant temperature-sensing operation which used to
occur every second. Thus the example above highlights
the technique which is used by the node-level optimizer;
read a certain sensor once on behalf of all queries and
share. Figure 4 depicts the algorithm which is performed
at each sensor node of the network to achieve the
functionality of the node-level optimizer.

Upon arrival of a new query, the QUERY-HANDLER()
procedure (Figure 4) will be invoked. This procedure will
invoke a sub-procedure: UPDATE-DATA-
STRUCTURES(q); which will update a certain data
structure which the sensor mote itself maintains, to keep
track of requests made by concurrent queries. Simply, this
data structure contains data such as which base station
demanded for which attributes at which rates. Afterwards,
csr and epoch will be updated.

’csr’ refers to the clock-strike rate for the sensor mote;
which initially equals to zero. Each mote maintains a clock
which strikes at a rate equal to the clock-strike rate. To save
energy, the sensor mote will only wake up when this clock
strikes. As such, it is important that the mote wakes up
every time a data acquisition is due. Hence, the clock-strike
rate is updated upon arrival of each query, to make sure the
wake up will happen correctly to compensate the newly
arrived query.

Authorized licensed use limited to: University College Dublin. Downloaded on July 18,2020 at 22:15:24 UTC from IEEE Xplore. Restrictions apply.

Dilini A. Muthumala, Udara S. Liyanage, Asanka P. Sayakkara, Jeevani S. Goonetillake 347

2018 International Conference on Advances in ICT for Emerging Regions (ICTer) 27th - 28th September 2018

Fig. 4. Sensor node-level optimizer algorithm

When the mote executes only one query, waking up at

a rate equal to the sample period of the query would
suffice. However, when there are concurrent queries
executing, the mote should wake up at a rate equal to the
greatest common divisor of the sample periods of all
concurrent queries, so that it is ensured that the mote is
awake whenever there is a sampling due for any query.

To keep track of the amount of time elapsed, the mote
maintains a counter - named ’epoch’. Upon arrival of a new

query, the epoch will be set to csr. This is because the
epoch will be divided by sampling rates to decide whether a
sampling is due; and to make epoch properly divisible by a
sampling rate, epoch should be a multiple of all sampling
rates; hence it is reset to a value equal to the greatest
common divisor of all sampling rates. In case, the newly
arrived query is the only query the mote executes, this
procedure will invoke another procedure: CLOCK-
STROKE-EVENT-HANDLER(). If there are any other
queries that the mote already executes, then invoking of
this procedure does not happen since those queries will
make sure to invoke the CLOCK-STROKE-EVENT-
HANDLER() within the same procedure itself.

The CLOCK-STROKE-EVENT-HANDLER() is first
invoked by the first ever query the mote receives.
Afterwards, it is invoked by itself every csr seconds; hence
no subsequent query need to invoke it. Upon invocation,
this handler iterates over a list of constants, where each
constant represents an attribute that the mote support
sensing. For example, a certain mote could be capable of
sensing Temperature, Humidity and Light; hence the list
of constants would be TEMPER- ATURE=0,
HUMIDITY=1, LIGHT=2. Let the constant in a certain

iteration be A, representing the attribute Temperature.
Temperature could have being demanded by zero or more
queries. The mote keeps a list of such demanded rates:
samplePeriodList[A]. The mote checks if at least one of the
elements in samplePeriodList[A] properly divides epoch. If
so, it indicates that at least one query has demanded
Temperature at the current epoch. For example, when the
current epoch is 10 seconds, a query demanding
temperature with a sample period of 2 wants Temperature
to be acquired at the current epoch. As such, the mote will
mark the fact that at least one query has demanded
Temperature at this epoch and continue iterating the
samplePeriodList[A]. The reason for continuing iterating
over the samplePeriodList[A] is that, even though the mote
knows that Temperature need to be acquired at this epoch,
the mote also wants to know all the base stations which
demanded Temperature at the current epoch. After noting
which base stations have demanded for Temperature, it will
stop iterating over the samplePeriodList[A] and acquire
Temperature. In the existing systems, how this would
happen is, Temperature would be acquired for each query
that demanded for it. In contrast, in the optimized way,
Temperature will be acquired only once, on behalf of all
the queries that demanded for Temperature.

Likewise, the same procedure will be executed for other
sup- porting attributes. Finally, since the mote has noted
which base stations has demanded which attributes at the
current epoch, the mote will send each base station only
one result packet, containing all the demanded sensory
data. This contrasts with the existing systems as follows.
In the existing systems, a separate packet will be sent to a
certain base station for each query that the base station has
produced. In the optimized way, only one packet will be
sent to the base station, containing all the data requested
by all the queries, produced by the base station. Base
station, typically being a powerful entity, can then make
sure to extract sensory data from the result packet and
deliver those to the relevant queries. After this process, the
CLOCK-STROKE-EVENT-HANDLER() will set itself to
call itself back in csr seconds.

Likewise, the same procedure will be executed for other
sup- porting attributes. Finally, since the mote has noted
which base stations has demanded which attributes at the
current epoch, the mote will send each base station only
one result packet, containing all the demanded sensory
data. This contrasts with the existing systems as follows.
In the existing systems, a separate packet will be sent to a
certain base station for each query that the base station has
produced. In the optimized way, only one packet will be
sent to the base station, containing all the data requested
by all the queries, produced by the base station. Base
station, typically being a powerful entity, can then make
sure to extract sensory data from the result packet and
deliver those to the relevant queries. After this process, the
CLOCK-STROKE-EVENT-HANDLER() will set itself to
call itself back in csr seconds.

III. EXPERIMENTS AND RESULTS

Since this research explores the possibility of optimizing
concurrent queries in the presence of single or multiple-base
stations, the evaluation has two parts:

Authorized licensed use limited to: University College Dublin. Downloaded on July 18,2020 at 22:15:24 UTC from IEEE Xplore. Restrictions apply.

348 Optimizing Concurrent-Query Execution in Wireless Sensor Networks

27th - 28th September 2018 2018 International Conference on Advances in ICT for Emerging Regions (ICTer)

1) Evaluation for single-base station WSNs
2) Evaluation for multiple-base station WSNs.

In a realistic WSN, there could be an infinite number of
possible scenarios that could occur. Since it is practically
impossible to evaluate the suggested optimization scheme for
each such scenario, several representative scenarios were
chosen and were evaluated. Some of such scenarios are
presented in this section..

A. Single-Base Station WSNs

In Section II-A: Examples, three states were identified at
which a base station can exclusively be, upon arrival of a new
query. Since any possible query falls under one of these
states, for the sake of completeness of the evaluation, one
scenario from each state was evaluated.

Fig. 5. Energy Consumption in Un-optimized scenario and Optimized
scenario, with respect to the three operators: Communication, Sensing
and Processing.

Fig. 6. Energy consumption comparison, with respect to state-2: The new
query is partially satisfiable.

Fig. 7. Energy consumption comparison, with respect to state-3: The new
query is not satisfiable at all.

1.The New Query is Fully Satisfiable: Scenario: A
particular user issues Query-12 from a certain base station.

After this query is being executed for 10 seconds, another
user inserts Query-13 from the same base station.
Afterwards, both the queries get executed concurrently and
node energy consumption was measured for 20 seconds.

Query-12

SELECT temp,
humid FROM
sensors SAMPLE
PERIOD 1s;

Query-13

SELECT temp,
humid FROM
sensors SAMPLE
PERIOD 1s;

The graph in Figure 5 shows that the optimization

scheme has saved the energy consumption in all three
possible ways: communication, processing and sensing.
This marks a realization of the expected outcomes from
base-station level optimizer.

Furthermore, the graph on the right in Figure 5 shows
the life time comparison between unoptimized and
optimized cases. The lifetime increment is from 8.7 days to
17.4 days, which is a significant improvement.

2.The New Query is Partially Satisfiable: Similar to the
previous scenario, the partially satisfiable scenario was
evaluated for the two queries 6 and 7 given under Section
II-A. The results obtained are as follows.

The graph in Figure 6 shows that the optimization
scheme has dropped the energy consumption in
communication, processing and sensing aspects. It can also
be noted that processing cost is increased in this scenario.
This could be the overhead introduced by the Node-level
Optimizer. However, most importantly, the graph on the
right hand side shows that, in overall, there is an increment
in sensor nodes lifetime. This is due to reducing energy-
hungry operations: communication and sensing, at the cost
of increased processing.

3.The New Query is not Satisfiable at all: This scenario
was evaluated for the two queries given under the same
state in Section II-A. The results obtained are shown in
Figure 7.

In this scenario, attribute values cannot be shared among
the queries. Thus there is no reduction in sensing cost.
However, as the queries are coming from the same base
station, a significant amount of communication cost could
be saved from sending one packet on behalf of both the
queries, as seen in the graph.

B. Multiple-Base Station WSNs

1.Attributes Can be Shared: Scenario: A particular user
issues Query-14 from a certain base station. At the same
time, another user inserts Query-15 from a different base
station. Afterwards, both the queries get executed
concurrently and node energy consumption was measured
for 50 seconds.

Authorized licensed use limited to: University College Dublin. Downloaded on July 18,2020 at 22:15:24 UTC from IEEE Xplore. Restrictions apply.

Dilini A. Muthumala, Udara S. Liyanage, Asanka P. Sayakkara, Jeevani S. Goonetillake 349

2018 International Conference on Advances in ICT for Emerging Regions (ICTer) 27th - 28th September 2018

Query-14

SELECT temp,
humid FROM
sensors SAMPLE
PERIOD 1s;

Query-15

SELECT temp,
humid FROM
sensors SAMPLE
PERIOD 1s;

As shown in the graph in the left side in Figure 8, the
communication cost has stayed same in both unoptimized
and optimized cases. This is because the node cannot send
one packet for both queries as they are originating from
different base stations. Further it can be noted that
processing cost has increased in the optimized case, while
the sensing cost has being reduced.

The graph on the right hand side shows that, on overall,
the optimization scheme has increased the lifetime of the
sensor node. This shows that the increment in processing
cost is compensated from the reduced sensing cost.

Fig. 8. Energy consumption comparison in the multiple-base station
scenario, when the queries have common attributes.

Fig. 9. Energy consumption comparison in the multiple-base station
scenario, when the queries have common attributes.

2.Attributes Cannot be Shared: Scenario: A particular
user issues Query-16 from a certain base station. At the
same time, another user inserts Query-17 from a different
base station. Afterwards, both the queries get executed
concurrently and node energy consumption was measured
for 50 seconds.

Query-16

SELECT humid
FROM sensors
SAMPLE PERIOD 1s;

Query-17

SELECT temp
FROM sensors
SAMPLE PERIOD
1s;

Since the queries have no attributes in common, the
node- level optimizer cannot share sensory data as done
previously. As such, sensing cost in the optimized case
stays same as in the unoptimized case. This can be
observed in Figure 9.

Communication cost too had stayed same while the pro-
cessing cost has increased. However, the lifetime-graph,
on the right, shows that this increment is insignificant as
the lifetime of the sensor node has not changed to a visible
extent.

IV. RELATED WORKS

As an early work for shared wireless sensor networks
with database abstractions, Tikiridb [2] facilitates concurrent
query executions which arrives from multiple base stations
and multiple users. However, in its implementation, each
query received by a node through the network is treated
individually in separate threads without considering any
possible optimizations on sensor nodes. Similarly, the base
stations of TikiriDB just act as routers which pass queries and
data between the network and user without considering
optimization possibilities.

 It is crucial to ensure, yet open to doubt, whether
concurrent queries could be processed in the optimal way by
query layers such as TinyDB and TikiriDB. However, many
researchers in the past have tried to optimize concurrent
queries [5], [12], [6], [11], [13], [9]. Different approaches
have been followed such as the universal-query approach [6],
two-tier multi- query optimization approach [12] and merge-
split-parallelize approach [5].

Several researchers have succeeded in reducing the energy
consumption of sensor motes by optimizing concurrent
queries. For instance, [5] suggests a method of rewriting a
set of concurrent queries, accumulated at the base station,
in to a new query-set in such a way that the new query-
set will consume a less amount of energy from the sensor
motes than the original-set would do. The problem with the
existing optimization mechanisms is that they seem to have
been designed assuming that a WSN has only one base
station.

When a WSN has multiple-base stations, such mechanisms
would either be inapplicable; or fail to optimize concurrent
queries, originating from different base stations.

V. CONCLUSIONS

This research explores the possibility of optimizing con-
current queries in the presence of single or multiple-base
stations. The aim is to reduce the energy spent by extremely
energy-constrained sensor nodes with respect to three
specific operations in query handling: communication,
sensing and processing.

In the presence of concurrent queries, the base station-
level optimizer reduces energy consumption in many ways.
When a newly inserted query is fully or partially satisfiable
within a base station, the base station-level optimizer reduces

Authorized licensed use limited to: University College Dublin. Downloaded on July 18,2020 at 22:15:24 UTC from IEEE Xplore. Restrictions apply.

350 Optimizing Concurrent-Query Execution in Wireless Sensor Networks

27th - 28th September 2018 2018 International Conference on Advances in ICT for Emerging Regions (ICTer)

energy consumption with respect to all three operations:
communication, sensing and processing. Among these
savings, communication-cost saving was the most significant,
then sensing cost, finally processing cost, which was
relatively less significant. However, when a newly inserted
query is not satisfiable, the base station does not do any
energy saving.

The node-level optimizer successfully saves energy to a
significant extent, using the two techniques: (1) sharing
sensor reading among queries, (2) sending one packet for
multiple queries coming from the same base station. From
sharing sensor reading once in every second, the node level
optimizer has been able to extend the lifetime of the sensor
nodes from 9 days to 9.3 days. From sending one packet for
multiple queries coming from the same base station, the node
level optimizer was able to extend the lifetime of the sensor
network from 9 days to 17.4 days.

The expected gain would become significant with respect
to the queries from different base stations if there are many
similar queries. Although there is a processing cost, that is
compensated by saving energy from sensing. Most
importantly, when the optimization scheme does not have
any chance to apply its techniques, still the optimization has
not brought any significant disadvantage. Thus it can be used
even when it is uncertain whether there will ever be any
chance for applying optimization techniques.

REFERENCES
2. Advanticsys. Tmote sky sensor mote. http://www.advanticsys.com/.
3. N. M. Laxaman, M. D. J. S. Goonatillake, and K. D. Zoysa. Tikiridb:

Shared wireless sensor network database for multi-user data access.
CSSL, 2010.

4. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tinydb:
An acqusitional query processing system for sensor networks. ACM
TODS, 2005.

5. A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson.
Wireless sensor networks for habitat monitoring. In Proceedings of
the 1st ACM international workshop on Wireless sensor networks and
applications, WSNA ’02, pages 88–97, New York, NY, USA, 2002.
ACM.

6. R. Mu¨ller and G. Alonso. Optimization of concurrent queries in
wireless sensor networks (technical report tr-589).

7. R. Mu¨ller, G. Alonso, G. Alonso, and G. Alonso. Shared
queries in sensor networks for multi-user support. ETH, Department
of Computer Science, 2006.

8. A. Nechibvute, A. Chawanda, and P. Luhanga. Piezoelectric energy
harvesting devices: an alternative energy source for wireless sensors.
Smart Materials Research, 2012, 2012.

9. V. Raghunathan, C. Schurgers, S. Park, and M. B. Srivastava. Energy-
aware wireless microsensor networks. Signal Processing Magazine,
IEEE, 19(2):40–50, 2002.

10. N. Trigoni, Y. Yao, A. Demers, J. Gehrke, and R. Rajaraman. Multi-
query optimization for sensor networks. In Distributed Computing in
Sensor Systems, pages 307–321. Springer, 2005.

11. G. Werner-Allen, K. Lorincz, M. Ruiz, O. Marcillo, J. Johnson, J.
Lees, and M. Welsh. Deploying a wireless sensor network on an
active volcano. Internet Computing, IEEE, 10(2):18–25, 2006.

12. S. Xiang, H. B. Lim, and K.-L. Tan. Impact of multi-query
optimization in sensor networks. In Proceedings of the 3rd workshop
on Data management for sensor networks: in conjunction with VLDB
2006, pages 7–12. ACM, 2006.

13. S. Xiang, H. B. Lim, K.-L. Tan, and Y. Zhou. Two-tier multiple query
optimization for sensor networks. In Distributed Computing Systems,
2007. ICDCS’07. 27th International Conference on, pages 39–39.
IEEE, 2007.

14. S. Xiang, Y. Zhou, H.-B. Lim, and K.-L. Tan. Query allocation in
wireless sensor networks with multiple base stations. In Database
Systems for Advanced Applications, pages 107–122. Springer, 2009.

Authorized licensed use limited to: University College Dublin. Downloaded on July 18,2020 at 22:15:24 UTC from IEEE Xplore. Restrictions apply.

