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Abstract. This research presents a comprehensive study on the development of 

an efficient and accurate plant disease prediction system using transfer learning 

models. The objective is to provide a reliable and accessible solution for farm-

ers and agronomists to identify and address plant diseases in a timely manner, 

leading to improved crop yields and sustainable farming practices. The study 

analyzes five transfer learning models: Efficientnet_v2, Inception_v3, Mo-

bilenet_v2, Resnet_v2, and Nasnet. Among these models, Efficientnet_v2, Res-

net_v2, and Mobilenet_v2 demonstrate superior performance and are selected 

for further analysis. The research evaluates different experimental conditions: 

Global Model, Crop-Specific Approach, Disease-Specific Approach, and Plant-

Family Based Approach. The Plant-Family Based Approach, focusing on the 

Nightshade plant family, exhibits superior accuracy in disease detection. An en-

semble model combining three transfer learning models is developed using the 

Plant-Family Based Approach. The ensemble model shows exceptional perfor-

mance and accuracy. Extensive testing and validation using diverse datasets 

demonstrate the system's high accuracy and efficiency in detecting diseases in 

various plant species. Future work includes expanding the dataset, fine-tuning 

hyperparameters, enabling real-time disease monitoring, and collaborating with 

agricultural experts to incorporate domain knowledge. 

Keywords: Plant Disease Prediction, Transfer Learning Models, Ensemble 

Model, Plant Family, Agricultural Management, Nightshade Family. 

1 Introduction 

Agriculture plays a crucial role in economic development, providing food security, 

employment, and contributing to overall growth. However, crop diseases pose a sig-

nificant threat to agricultural productivity, resulting in economic losses. Timely and 

accurate identification of crop diseases is essential for effective control measures. 

Unfortunately, farmers and agricultural professionals face challenges in disease iden-
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tification and management, which can lead to extensive crop damage and reduced 

profitability [1]. 

Motivated by the growing trend of home gardening and the need for effective dis-

ease management in large-scale crop production systems, this research aims to ad-

dress the lack of accessible solutions for early detection and identification of crop 

diseases. The objective is to develop a user-friendly solution leveraging machine 

learning and image recognition technologies to enable easy and precise disease detec-

tion based on plant families. 

The proposed solution aims to democratize disease identification and empower in-

dividuals with limited resources and expertise to detect and manage crop diseases 

effectively. By training a robust and accurate crop disease identification model using 

transfer learning and ensemble learning techniques, this research aims to enhance 

agricultural productivity, reduce crop losses, and contribute to sustainable food pro-

duction [2]. 

The research questions directly interconnected with this study are as follows: RQ1: 

Which transfer learning algorithms output high performance for predicting crop dis-

eases using leaf images? RQ2: How does the family-based plant disease detection 

model differ from other existing approaches in terms of performance? RQ3: How 

does the integration of ensemble learning techniques enhance the performance and 

accuracy of the family-based plant disease detection model? 

The research scope focuses on developing and evaluating a family-based plant dis-

ease detection model using transfer learning and ensemble learning techniques, with a 

specific emphasis on the Nightshade biological family. The dataset used for training 

and validation is the PlantVillage dataset [3]. The research's contribution to the field 

includes advancements in crop disease prediction techniques, exploration of transfer 

learning algorithms, integration of ensemble learning techniques, and practical im-

plementation with real-world impact. These contributions have implications for im-

proving agricultural practices, optimizing resource management, and promoting sus-

tainable farming. 

2 Related Work 

Crop disease recognition is crucial for agricultural productivity and food security. 

Traditional methods like visual inspection and symptom observation have limitations 

in terms of subjectivity, time consumption, and expertise requirements. Automated 

techniques are needed for accurate and efficient disease recognition [4]. 

2.1 Computer Vision-Based Techniques for Crop Disease Recognition 

Computer vision-based techniques, particularly deep learning-based approaches using 

convolutional neural networks (CNNs), have shown promise in crop disease recogni-

tion. CNNs can extract features from crop images and classify diseases without ex-

plicit feature engineering [5]. Several CNN-based models have achieved high accura-

cy in detecting diseases in various crops. 
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Agarwal and their team propose a simplified CNN model with 8 hidden layers for 

tomato crop disease identification [6]. The model surpasses traditional machine learn-

ing approaches and pretrained models, achieving an accuracy of 98.4% on the 

PlantVillage dataset. Image pre-processing techniques and augmentation are used to 

improve performance. Furthermore, the model achieves a high accuracy of 98.7% on 

datasets other than PlantVillage. In another study, Bharathi and colleagues combine 

CNN and an autoencoder for crop leaf disease detection, achieving an impressive 

accuracy of 99.82% on the PlantVillage dataset. The optimized approach outperforms 

existing methods in detecting crop leaf infections. This research highlights the poten-

tial of CNN-based techniques for accurate and efficient crop disease recognition in 

agriculture [7]. Additionally, Mohanty et al. address the challenge of rapid crop dis-

ease identification by leveraging deep learning and smartphone usage. Their deep 

CNN model trained on a large dataset achieves a remarkable accuracy of 99.35% on 

the test set, enabling smartphone-assisted crop disease diagnosis on a global scale 

using publicly available image datasets [8]. 

2.2 Transfer Learning in Crop Disease Recognition 

Transfer learning is a technique that transfers knowledge from pre-trained models to 

new tasks. In crop disease recognition, transfer learning addresses the challenge of 

limited annotated data and reduces training time [9]. Various transfer learning archi-

tectures, such as EfficientNet, Inception, MobileNet, ResNet, and NasNet, have been 

applied to crop disease recognition tasks, achieving high accuracy in different crop 

species. Researchers have investigated these structures in conjunction with various 

crop species in order to improve the accuracy and efficiency of plant disease predic-

tion. Table 1 provides a complete overview of the individual architectural and crop 

species to which they have been applied. 

Table 1. Architecture and crop species with model accuracy. 

Reference TL Architecture Crop Species Accuracy 

[16] Efficientnet Corn 98.85% 

[17] Inception Banana 90% 

[18] Mobilenet open-source dataset 99.13% 

[19] VGGNet Rice 92% 

[20] ResNet Tomato 97.28% 

[21] Nasnet 38 Crop Species 99.31% 

[22] VGGNet Tomato 89% 

[1] ResNet50 Potato, Tomato, Corn 98.7% 

[23] DenseNet Tomato (10 classes) 97.11% 

 

EfficientNet_v2: An advanced CNN architecture that optimizes depth, width, and 

resolution simultaneously, achieving state-of-the-art results [10]. Inception_v3: Intro-

duces the Inception module for multi-scale feature extraction and incorporates tech-

niques like factorized convolution and batch normalization [11]. MobileNet_v2: De-

signed for resource-constrained environments, it employs depth-wise separable con-

volutions to reduce computational complexity while maintaining accuracy [12]. 
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VGGNet: Known for its simplicity and uniformity, it uses deeper networks with 

smaller filters for accurate feature extraction [13]. ResNet_v2: Introduces residual 

connections to alleviate the vanishing gradient problem and enables training of deeper 

networks [14]. NasNet: Based on neural architecture search, it automatically discov-

ers optimal network architectures for specific tasks using reinforcement learning or 

evolutionary algorithms [15]. 

2.3 Existing Crop Disease Recognition Approaches 

Existing plant disease prediction approaches can be categorized into three modeling 

strategies. The first involves models designed for a single crop, capable of detecting 

multiple diseases with high accuracy. The second focuses on models trained to detect 

a specific disease across different crops, ensuring effective recognition regardless of 

the crop type. The third employs a global model that identifies multiple diseases 

across various crops, treating crop-disease combinations as class labels. 

While individual models for specific crops and diseases have achieved high accu-

racy, developing separate models for each combination is resource intensive. To ad-

dress this, some studies have explored global models that leverage shared knowledge 

and unified datasets, successfully detecting multiple crops and diseases. However, 

integrating a large number of crops and diseases into a single model presents chal-

lenges, highlighting the need for alternative approaches. Table 2 provides an overview 

of different crop disease prediction strategies. 

Table 2. Crop disease prediction approaches. 

Reference Crop/Disease Approach 

[24] Rice Crop Specific 

[25] Potato Crop Specific 
[26] Maize Crop Specific 

[27] Potato Blight Diseases Specific 
[28] Blight Disease Diseases Specific 

[29] Late Blight Disease Diseases Specific 

[30] Multiple Plants Global Model 

[31] Multiple Plants Global Model 

[32] Multiple Plants Global Model 

[8] Multiple Plants Global Model 

 

2.4 Plant Family-Based Approach (Proposed Approach) 

This approach in crop disease recognition considers the evolutionary relationships and 

genetic similarities among crop species within the same plant family. This approach 

recognizes that closely related crops share common characteristics and vulnerabilities 

to specific diseases. Table 3 discloses the Nightshade family plants, diseases and re-

sponsible pathogens. By utilizing this knowledge, disease recognition models can 

leverage similarities between crops to enhance accuracy and efficiency. 
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This approach offers several advantages. It allows for the transfer of knowledge 

and insights gained from one crop to another within the same family, reducing the 

need for extensive training data for each individual crop. It enables targeted interven-

tions based on shared disease characteristics and improves disease recognition accu-

racy, especially for diseases that have not been extensively studied in certain crops. 

 Crop species belonging to the same plant family often exhibit similar growth pat-

terns and nutrient requirements, making them susceptible to the same pathogens. For 

example, the Nightshade family includes crops like pepper and tomato, which are 

affected by the Geminivirus pathogen causing Yellow Leaf Curl disease. When a 

disease emerges in one crop within a family, there is a high probability of its spread to 

other crops within the same family. Farmers often cultivate crops from same family in 

specific geographic locations due to their compatibility with local weather conditions. 

 By adopting this approach, the challenges associated with the vast diversity of crop 

species and their diseases can be addressed. Instead of trying to develop a single glob-

al model for all crops, focusing on plant family-based models provides a more target-

ed and efficient approach to crop disease recognition and management. This approach 

aligns with the practical realities of crop cultivation and offers a framework for im-

proving disease diagnosis and prevention strategies on a broader scale. 

Table 3. Nightshade family plants, diseases and responsible pathogens. 

2.5 Ensemble Learning Techniques 

Ensemble learning has gained popularity as a strategy to improve prediction accuracy 

and generalization performance in machine learning [33]. It involves combining mul-

tiple models to make predictions and can be categorized into bagging and boosting 

techniques. 

Bagging methods, such as Random Forest and Extra Trees, train independent mod-

els on different subsets of data and aggregate their predictions to enhance accuracy 

and address overfitting. Random Forest combines decision trees, while Extra Trees 

further increases diversity among the trees by randomizing the tree-building process. 

Boosting algorithms, such as AdaBoost and Gradient Boosting, sequentially train 

Plant Disease Pathogen 

Tomato Late blight Phytophthora infestans 

Tomato Early blight Alternaria solani 

Tomato Tobacco mosaic disease Tobacco mosaic virus 

Tomato Verticillium wilt Verticillium dahliae 

Potato Late blight Phytophthora infestans 

Potato Early blight Alternaria solani 

Potato Verticillium wilt Verticillium dahlia 

Eggplant Early blight Alternaria solani 

Eggplant Verticillium wilt Verticillium dahlia 

Pepper Early blight Alternaria solani 

Pepper Tobacco mosaic disease Tobacco mosaic virus 

Pepper Verticillium wilt Verticillium dahliae 

Tobacco Tobacco mosaic disease Tobacco mosaic virus 
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models and give more importance to misclassified instances. AdaBoost assigns 

weights to instances based on difficulty and combines the predictions of weak classi-

fiers using weighted voting. Gradient Boosting builds an ensemble iteratively by min-

imizing the loss function [34]. Ensemble learning techniques have been successfully 

applied in various domains. In image classification, they are effective in handling 

complex visual patterns. 

3 Methodology 

3.1 Initial Phase 

In this study, a dataset consisting of manually collected images of Nightshade family 

plants and the publicly accessible Plant Village dataset was used. The dataset includes 

a total of 54,309 leaf images from 14 different crop species, representing 38 distinct 

diseased and healthy classifications. The images were collected from experimental 

research stations associated with Land Grant Universities in the USA [3]. The dataset 

was focused specifically on Nightshade family plants, including Tomato, Potato, and 

Pepper crops. It consisted of 15,000 instances of healthy and diseased images, result-

ing in a balanced dataset with 15 initial classes. The dataset was split into training and 

validation folders, with an 8:2 ratio. A manually collected set of 450 images, expert 

reviewed and labeled, was used to assess the model's performance. 

The original dataset primarily focuses on tomato plants, while the dataset used in 

this study includes a more limited representation of potato and pepper crops. Howev-

er, this dataset configuration is sufficient to evaluate the proposed approach, and the 

experimental strategies employed in the research, ensuring that they are tailored to the 

specific characteristics and requirements of Nightshade family crops. 

Image pre-processing method was used to enhance the quality of input images and 

facilitate subsequent processing. The method included image resizing, normalization, 

and data augmentation techniques. To ensure consistency in the dataset, all images 

were resized to a stable size of 224 x 224 pixels. This standardization allowed for 

easier processing and analysis by ensuring that all images had the same dimensions. 

 Data normalization was applied to ensure consistent distribution of data across 

each pixel of the images. This step involved extracting the mean value of each pixel 

and normalizing the values by dividing them by the standard deviation. This normali-

zation process improved convergence during network training. 

 Image augmentation techniques were used to create a robust image classifier. By 

applying techniques such as rotation, zooming, and flipping, new data was generated 

from existing images. This augmentation process expanded the dataset and introduced 

more variations, enabling the classifier to learn and generalize better from a wider 

range of image samples. 

 A literature review is conducted to identify transfer learning models that have 

shown excellent performance in previous crop disease prediction research using vari-

ous approaches. Based on the review, five models are chosen for analysis: Efficient-
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net_v2, Inception_v3, Mobilenet_v2, Resnet_v2, and Nasnet. These models have 

demonstrated their effectiveness in similar tasks. 

 Several factors were considered to assess the selected transfer learning models. The 

first factor was the computational efficiency of the models, specifically their training 

time. The second factor was the models' training accuracy over 10 epochs, which 

measured their ability to learn from the dataset. The third factor was their prediction 

accuracy on a new dataset, which evaluated their overall performance. Lastly, the 

variation between training and validation accuracy was examined to determine the 

stability of the models. 

 The analysis was conducted using high-performance computing devices provided 

by Microsoft Azure, which featured a specific configuration including an Intel(R) 

Xeon(R) Platinum 8370C CPU 2.80GHz processor, 8 vCPUs, 64GB RAM, and Pre-

mium SSD storage. Maintaining stable conditions throughout the analysis was crucial 

to ensure consistency in the dataset, the number of images, the number of classes, and 

other relevant factors. 

3.2 Experiment Design 

In the experiment phase, four different experimental conditions were designed to 

evaluate the performance of different crop disease detection approaches using three 

transfer learning architectures. Balanced datasets were used for each experimental 

condition, and stable conditions were maintained for assessing efficiency and effec-

tiveness. 

Experimental Condition 1 focused on a global model where crop-disease combina-

tions were treated as individual classes. It included 15 classes representing tomato, 

potato, and pepper crops. Experimental Condition 2 employed a crop-specific ap-

proach, focusing on the tomato crop with multiple diseases as class labels. It consisted 

of 10 classes of tomatoes, including diseased and healthy samples. Experimental 

Condition 3 considered disease-specific approaches for Bacterial Spot and Early 

Blight diseases, involving multiple crops. Each disease had 4 classes representing 

pepper and tomato, as well as potato and tomato, respectively. Experimental Condi-

tion 4 implemented a plant-family based approach, defining classes based on disease 

names and selecting samples from Nightshade family crops. It included 10 classes 

representing various diseases. 

3.3 Evaluation and Implementation Phase 

The four experimental conditions are thoroughly analyzed with the real dataset to 

determine the most efficient and effective approach. Using the previously selected top 

three transfer learning architectures and the plant-family based approach, transfer 

learning models are developed. These models incorporate the stable conditions main-

tained throughout the analysis phase. The output transfer learning models are subject-

ed to ensemble learning techniques, specifically using the average function. The en-

semble model is obtained as the final output, combining the strengths and knowledge 

of the individual models. The proposed system is illustrated in Fig. 1, which presents 
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the flow chart depicting the various steps and processes involved. This visual repre-

sentation outlines the sequential flow of operations and decisions within the system. 

 

 
Fig. 1. Proposed System’s Flow Chart. 

4 Results and Discussion 

4.1 Evaluation of Transfer Learning Models 

Thoroughly evaluated five transfer learning models: Efficientnet_v2, Inception_v3, 

Mobilenet_v2, Resnet_v2, and Nasnet. We conduct a detailed analysis under stable 

conditions to ensure consistency in the dataset, image counts, classes, and training 

epochs. We consider the factors of evaluation metrics to evaluate. The objective of 

this comprehensive evaluation is to identify the top-performing models that achieve 

high accuracy while being computationally efficient. More detailed information about 

these models can be found in Table 4. Efficientnet_v2, Mobilenet_v2, and Resnet_v2 

emerged as the top-performing models with high training accuracy, minimal varia-

tion, and excellent generalization capabilities. Efficientnet_v2 stood out with the 

highest accuracy and stability, while Mobilenet_v2 offered a balanced combination of 

accuracy and shorter training time. Resnet_v2 also performed well across all criteria. 

These models ensure reliable predictions considering computational efficiency and 

practical constraints. 
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Table 4. Transfer Learning model selection experiment results. 

TL Model Training Time (S) Accuracy Variation Performance (New Dataset) 

Efficientnet_v2 2408 96.98% 1.98% 95.00% 

Inception_v3 5368 89.78% 2.41% 87.37% 

Mobilenet_v2 1755 90.80% 3.23% 87.57% 

Resnet_v2 3676 92.66% 3.73% 88.93% 

Nasnet 3265 85.28% 2.55% 82.73% 

4.2 Experimental Conditions and Results 

In this section, we present the results obtained from the four experimental conditions: 

Global Model, Crop-Specific Approach, Disease-Specific Approach, and Plant-

Family Based Approach. 

 

Experimental Condition 1: Global Model: Each crop-disease combination is treated 

as a separate class (15 Classes). The results showed that all three models performed 

well in this approach. When considering the accuracy of the global model at the class 

level. Classes are designated L1 through L15. Table 5 contains the relevant infor-

mation. The results highlight variations in the models' accuracy across different clas-

ses. Efficientnet_v2 generally achieved higher accuracy across multiple classes, fol-

lowed by Mobilenet_v2 and Resnet_v2. 

Table 5. Class level accuracy of global model. 

TL Model L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 

Efficientnet_v2 99.5 99.0 98.9 100.0 95.1 93.6 79.2 98.4 95.8 94.8 91.1 98.1 89.0 99.0 93.8 

Mobilenet_v2 98.0 95.9 100 96.7 87.2 95.5 56.8 86.5 86.5 86.9 71.4 78.8 85.2 94.6 93.3 

Resnet_v2 92.1 97.9 100 97.8 81.3 94.1 78.1 98.4 76.0 68.6 92.7 94.2 80.0 93.2 93.8 

 

Experimental Condition 2: Crop-Specific Approach: It focused on the tomato crop 

and its 10 distinct classes. When considering the accuracy of the crop-specific model 

at the class level. Classes are designated L1 through L10. Table 6 contains the rele-

vant information. Efficientnet_v2 consistently demonstrated the highest accuracy 

across most classes, indicating its effectiveness in classifying the specific disease 

types. Mobilenet_v2 showed decent performance but had slightly lower accuracy in 

some classes. Resnet_v2 exhibited mixed results, with varying levels of accuracy 

across different classes. 

Table 6. Class level accuracy of crop-specific model. 

TL Model L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 

Efficientnet_v2 95 79.3 100 92.7 94.5 87.6 93.5 97.5 99.1 97.5 
Mobilenet_v2 92.8 65.3 93.2 92.2 77 71.8 80.5 84.3 90.7 98 

Resnet_v2 86.1 67.9 97.6 81.3 74.7 89.6 90 90.9 85 88.9 
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Experimental Condition 3: Disease-Specific Approach: We investigated two spe-

cific diseases: Bacterial Spot disease with pepper and tomato crops, and Early Blight 

disease with potato and tomato crops. The evaluation metrics were used to measure 

the performance of the model with 4 distinct classes for bacterial spot disease. Classes 

are designated L1 - L4, accordingly. Pepper_Bacterial_Spot, Pepper_Healthy, Toma-

to_Bacterial_Spot, Tomato_Healthy. Similarly used 4 distinct classes for early blight 

disease. Classes are designated L5 - L8, accordingly. Potato_Early_Blight, Pota-

to_Healthy, Tomato_Early_Blight, Tomato_Healthy. Table 7 discloses the summary 

of evaluation metrics for the disease-specific approach. All three models showcased 

strong performance in accurately identifying Bacterial Spot and Early Blight Disease. 

Table 7. Evaluation metrics of disease-specific model. 

TL Model 
Bacterial Spot Disease Early Blight Disease 

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score 

Efficientnet_v2 99.36 99.42 99.34 99.37 99.63 99.62 99.62 99.62 

Mobilenet_v2 98.38 98.37 98.41 98.38 98.25 98.38 98.16 98.22 

Resnet_v2 98.00 98.13 97.93 98.01 99.38 99.38 99.39 99.38 

 

Experimental Condition 4: Plant-Family Based Approach: This approach focused 

on constructing classes based solely on disease names within the Nightshade plant 

family. The evaluation metrics were used to measure the models' ability to detect 

diseases within this plant family with 10 distinct classes. Classes are designated L1 - 

L10, accordingly. Bacterial_Spot, Early_Blight, Healthy, Late_Blight, Leaf_Mold, 

Mosaic_Virus, Septoria_Leaf_Spot, Spider_Mites, Target_Spot, and Yel-

low_Leaf_Curl_Virus. Table 8 contains the relevant information. 

4.3 Discussion of Experiment Results 

In experimental condition 3, the EfficientNet_V2 model demonstrates the highest 

performance, establishing it as the optimal scenario for detecting a specific disease. 

However, despite its high accuracy, its focus on a single disease restricts its applica-

bility to a broader range of diseases and crops. Based on evaluation metrics, experi-

mental condition 1 is the second-best scenario, with the EfficientNet_V2 model 

achieving the highest scores. While MobileNet_V2 and ResNet_V2 perform slightly 

lower, they still demonstrate strong results. This condition offers a broader approach 

by predicting multiple diseases across various crops, enhancing versatility. However, 

the large number of class-labels and potential imbalances may challenge accuracy and 

precision. 

Experimental condition 4 ranks as the third-best scenario, with the Efficient-

Net_V2 model achieving strong yet slightly lower performance than condition 1. 

MobileNet_V2 and ResNet_V2 also perform well, though slightly below Efficient-

Net_V2. This condition leverages shared characteristics within plant families to group 

diseases, simplifying classification and reducing class labels. This approach balances 
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specificity and generalization, enhancing prediction while mitigating challenges asso-

ciated with numerous class labels. 

Experimental condition 2 ranks as the fourth-best scenario, with all models achiev-

ing lower scores across all metrics. This condition focuses on predicting multiple 

diseases for a single crop, providing targeted disease detection beneficial for farmers. 

However, its limited generalization to other crops may necessitate separate models for 

different crops. 

Considering the strengths and limitations of each experimental condition, the plant-

family-based approach (experimental condition 4) offers notable advantages. By lev-

eraging shared characteristics within plant families, it balances specificity and gener-

alization, simplifying classification and reducing challenges associated with numerous 

class labels. This approach enhances prediction accuracy while accounting for disease 

relatedness within similar pathogens. Based on the results, the plant-family-based 

model, focused on detecting diseases within the Nightshade family, outperforms the 

Global Model, Crop-Specific Model, and Disease-Specific Model. 

Table 8. Class level accuracy for plant family-based model. 

TL Model L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 
Efficientnet_v2 95.6 77.7 98 93.8 94.5 100 96.5 94.4 90.7 97.5 
Mobilenet_v2 86.7 72.5 89.3 88.1 85.7 90.6 75 81.8 82.7 96 

Resnet_v2 84.4 80.8 92.2 81.3 78.3 95 86.5 88.9 89.3 88.4 

4.4 Ensemble Model Development 

To create our ensemble model, we have chosen three effective transfer learning mod-

els from the plant-family based approach: Efficientnet_v2, Mobilenet_v2, and Res-

net_v2. These models have shown excellent performance in accurately detecting 

Nightshade plant family diseases. By combining their strengths, our ensemble model 

aims to improve predictive capability and robustness. We expect the ensemble model 

to achieve even higher accuracy than the individual models through training. By lev-

eraging the collective intelligence of multiple models, the ensemble model can make 

more informed disease predictions within the Nightshade plant family. Fig. 2 illus-

trates the training & validation accuracy and loss of ensemble model over 15 epochs. 

After the ensemble model development, we evaluate the model with randomly select-

ed 2000 images of PlantVillage dataset which are not previously used in this research. 

The below Fig. 3 shows the confusion matrix of this evaluation. 

5 Conclusion 

In summary, this research aimed to develop an efficient and accurate plant disease 

prediction system using transfer learning models. Various experimental conditions, 

including the Global Model, Crop-Specific, Disease-Specific, and Plant-Family-

Based approaches, were evaluated. The Plant-Family-Based approach, focused on the 

Nightshade family, demonstrated the highest accuracy, precision, recall, and F1-score. 
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Building on this, an ensemble model combining three transfer learning models was 

developed, achieving superior performance. 

 

 
Fig. 2. Training and Validation Accuracy and Loss of Ensemble Model Training. 
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