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Abstract: The advancement of cryptographic systems presents both opportunities and challenges 1

in the realm of digital forensics. In an era where the security of digital information is crucial, 2

the ability to non-invasively detect and analyse cryptographic configurations becomes significant. 3

As cryptographic algorithms become more robust with longer key lengths, they provide higher 4

levels of security. However, non-invasive side channels, specifically through electromagnetic (EM) 5

emanations, can expose confidential cryptographic details, thus presenting a novel solution to the 6

pressing forensic challenge. This research delves into the capabilities of EM Side-Channel Analysis 7

(EM-SCA) specifically focused on detecting both cryptographic key lengths and the algorithms 8

employed, utilising a machine learning-based approach, which can be instrumental for digital 9

forensic experts during their investigations. Data collection was carried out on an Arduino Nano 10

board, which executed the Advanced Encryption Standard (AES) and Elliptic Curve Cryptography 11

(ECC) algorithms. Specifically, the board was tested with key lengths of 128, 192, and 256 for AES and 12

160, 192, and 256 for ECC. A HackRF One software-defined radio (SDR) facilitated the capture of EM 13

emissions. A pipeline was implemented to process raw EM data, extract frequency-domain features, 14

and bucket this information for dimensionality reduction, enhancing its applicability for Machine 15

Learning (ML). ML models, such as Logistic Regression, Random Forest, XGBoost, LightGBM and 16

Support Vector Machine (SVM), were trained on this processed dataset to differentiate between key 17

lengths. Training multiple ML models on this specific dataset yielded varying degrees of accuracy 18

in differentiating between key lengths. In a combined data examination of AES and ECC, the 19

SVM model emerged with an accuracy of 94.55%. When individually assessed on AES and ECC 20

data, Logistic Regression performed best accuracies of 98.47% and 98.76%, respectively. SVM once 21

again demonstrated its ability in binary classification tasks between AES and ECC, obtaining an 22

accuracy of 95.97%. This study contributes significantly to enhancing digital forensic capabilities in 23

encrypted data investigation, offering a methodological advancement for non-invasively uncovering 24

cryptographic settings in IoT devices. 25

Keywords: Digital Forensics; Electromagnetic Side-Channels Analysis; Encryption; Software Defined 26

Radio; Machine Learning; Advanced Encryption Standard; Elliptic Curve Cryptography 27

1. Introduction 28

Digital forensics plays a critical role in today’s legal investigations. It focuses on 29

extracting and analyzing digital data to be used as evidence in investigations. With the in- 30

crease in Internet of Things (IoT) devices, the field of digital forensics faces new challenges. 31

These devices, equipped with various sensors and ways to connect, are now a part of daily 32

life. Consequently, they often store information that can play a critical role as evidence in 33

investigations, such as cryptography-related events, firmware versions, firmware modi- 34

fications, and device behavioural state [1]. However, standard digital forensics methods 35

often struggle to retrieve such information, especially when the data inside these devices is 36

encrypted. 37
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One of the primary obstacles facing lawful digital forensic investigation is the inability 38

to investigate encrypted data [2,3]. Although cryptographic methods enhance security, 39

they concurrently hinder forensic investigations, under warrant, that need to access this 40

data. Techniques such as Differential Electromagnetic Analysis (DEMA) and Correlation 41

Electromagnetic Analysis (CEMA) are well-established cryptographic key retrieval methods 42

that leverage Electromagnetic Side-Channel Analysis (EM-SCA). EM-SCA, at its core, 43

examines the electromagnetic (EM) signals emitted by electronic devices during their 44

operation. Intriguingly, the pattern of these signals can change based on the exact internal 45

operation of the device, potentially revealing confidential details, such as cryptographic 46

keys [4]. EM-SCA is distinctive, since it non-intrusively observes a device, leaving the 47

internal operations of the device intact. This makes it a plausible tool for extracting keys 48

from a vast array of devices, especially IoT devices. 49

However, the application of DEMA and CEMA effectively requires prior understand- 50

ing of the cryptographic settings at play, such as the exact algorithm and its key length. 51

Detecting both the algorithm and its key length is a significant indicator of any successful 52

cryptographic breaking endeavour in digital forensic contexts. While some may argue that 53

forensic investigators could straightforwardly consult the device manufacturer’s manual, 54

documentation, or source code to identify the operating procedures for cryptography, one 55

cannot overlook potential modifications. Firmware in devices could undergo alterations by 56

regular end-users or even by malicious entities, thereby adding layers of complexity to the 57

investigator’s key retrieval mission. In such scenarios, having an assured method to verify 58

the algorithm and its key length is significant. This research explores a new approach using 59

EM-SCA to address the challenge of extracting cryptographic keys from IoT devices, with 60

an Arduino Nano serving as a representative of IoT hardware. 61

To understand the underlying principles of EM-SCA, it is essential to explore the 62

characteristics of EM radiation. EM radiation is strongly tied to human existence and 63

generated by various electrical systems, including mobile phones, the IoT, wearable devices, 64

communication base stations, electronic devices, and other EM technology [5]. It is a form 65

of energy that is produced when electricity is transmitted through a conductive material. 66

Using this characteristic of EM radiation, this research focuses on analysing unintentional 67

EM radiation of IoT hardware platforms to reveal their internal cryptographic settings. 68

With software-defined radio (SDR) tools, such as HackRF One, these EM signals can be 69

captured and studied as the target device operates. By analysing these signals, it is possible 70

to learn about the device’s activities, especially when performing cryptographic tasks. 71

The primary objective of this work is to demonstrate the potential of EM-SCA in 72

the field of digital forensics, highlighting its capability to identify key length and crypto- 73

graphic algorithms from such representative devices. This exploration further addresses 74

the sophisticated interaction between digital forensics and cryptographic vulnerabilities, 75

underscoring the significant techniques that enhance forensic capabilities and expose 76

cryptographically secure evidence. 77

Consider a scenario of an IP camera, commonly employed in surveillance and fre- 78

quently encountered in crime scenes. Such devices continuously capture, record, and 79

encrypt data, posing unique challenges in cryptographic analysis and key recovery. Under- 80

standing the encryption algorithm and key length in devices like IP cameras is a crucial 81

preliminary step in forensic investigations, laying the foundation for subsequent decryption 82

and data retrieval efforts. In forensic investigations of such a device, it is necessary to have 83

methods to quickly detect the cryptographic algorithm and its key length involved in the 84

device through a non-invasive means. The presented approach in this work can play a 85

major role in the initial step towards cryptographic key recovery. 86

Contribution of this work: 87

• Introduces a novel methodology to distinguish cryptographic algorithm and its key 88

length employed on an IoT device: This study employs a data processing pipeline that 89

applies EM-SCA on an Arduino Nano, a representative of IoT devices, to discriminate 90
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between different cryptographic key lengths and their associated algorithms with 91

high reliability. It moves beyond existing EM-SCA applications by offering a precise 92

method for identifying both the cryptographic algorithm and key length employed in 93

IoT devices, thus filling a critical gap in the domain of digital forensics. 94

• Demonstrates the viability of using ML models on learning cryptography-specific 95

patterns in EM radiation of IoT devices: The integration of advanced machine learn- 96

ing techniques, specifically SVM and Logistic Regression, to analyse EM radiation 97

patterns unique to cryptographic operations in IoT devices. The study demonstrates 98

how these methods can significantly enhance the detection and analysis of crypto- 99

graphic operations, optimising the process of cryptographic detection and offering a 100

more robust and sophisticated approach to forensic investigations. 101

• Lays the foundation for cryptographic key retrieval through EM-SCA in digital 102

forensic contexts: This study lays the groundwork for future cryptographic key 103

retrieval efforts by identifying critical cryptographic settings through non-invasive 104

means. Previous approaches to cryptographic key retrieval were constrained by 105

a lack of detailed knowledge about the cryptographic system under investigation. 106

By enabling the discovery of both the cryptographic algorithm and its key length, 107

this work opens new avenues for developing successful key retrieval techniques, 108

potentially revolutionizing the field of digital forensics. 109

2. Background 110

EM phenomena, an inherent property of electronic devices, have become an area 111

of increasing investigation in the realm of cybersecurity. While EM noise has long been 112

recognised for its potential to interfere with the operation of electronic devices, its ability 113

to inadvertently leak critical information about device operations has turned it into a 114

double-edged sword [6]. The operation of other electronic devices in the same environment 115

can be hampered by the emission of EM noise, which is often encountered in electrical 116

device-busy environments. The presence of EM noise can negatively affect the functionality 117

of electronic components in the environment, due to the electrical and magnetic fields of 118

these components interfering with each other. The performance and security of electrical 119

systems can be impacted by two types of Electromagnetic interference (EMI): unintentional 120

and intentional. Unintentional EMI refers to the emissions from electrical equipment as a 121

by-product of regular operation, while intentional EMI refers to deliberate emissions with 122

the intention of disrupting equipment. 123

In 1996, Kocher [7] defined various types of SCAs that attackers can use to access 124

cryptographic devices. SCAs gather data on a system’s internal operational activity without 125

using the system’s standard interfaces. SCAs are a subset of implementation attacks that 126

exploit vulnerabilities in a device’s physical implementation rather than attacking the math- 127

ematical strength of a cryptographic algorithm. In order to discover internal computations, 128

SCAs use external representations including processing time, power consumption, and EM 129

emissions [8–11]. SCAs are often passive, which allows the attacker to use them without 130

drawing attention to themselves or physically arming the system of interest. 131

The study by Sayakkara et al. [12] explored the use of EM-SCA to detect cryptographic 132

activity in IoT devices by focusing on the EM emissions produced by a Raspberry Pi. The 133

study aimed to automatically detect the data encryption operations performed by the device 134

using AES-128, AES-256, and 3DES cryptographic algorithms. The results showed that 135

a neural network classifier could discriminate between these encryption techniques with 136

80% accuracy, demonstrating the potential of EM-SCA as a tool for detecting cryptographic 137

operations and suggesting its application to detect encryption algorithms on less capable 138

hardware devices. 139

Recent advancements in EM-SCA have furthered its application in cryptographic 140

analysis. In 2018, [13] showcased the retrieval of an AES cryptographic circuit’s secret key 141

using a deep learning-based side-channel attack, correlating EM emissions with power 142
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noise and highlighting vulnerabilities in the AES Sub-byte (S-box) layer. Kumar et al. [14] 143

developed a simulation setup for Differential Electromagnetic Analysis of cryptographic 144

modules, employing industry-standard CAD tools for efficient transistor-level simulations, 145

focusing on EM radiation from power/ground interconnects. Iyer and Yilmaz [15] intro- 146

duced an F-statistic analysis to accelerate EM-SCA attacks, notably in optimizing probe 147

configurations for key retrieval from FPGA implementations of AES-128. Similarly, Won 148

and Bhasin [9] used a high-sensitivity EM sensor along with Correlation Power Analysis 149

to successfully retrieve the AES-128 key, demonstrating the capability of EM-SCA in so- 150

phisticated encryption scenarios. These studies collectively advance the understanding of 151

EM-SCA in cryptographic analysis, predominantly focusing on key retrieval. 152

In the fields of SCA and cryptography, preprocessing is a vital stage in increasing 153

attack effectiveness, since it is frequently utilised to boost attack success [16,17]. The sample 154

size of the EM-SCA can be continuously expanded to increase the success rate, but this 155

may result in a lengthy cracking time, limiting the viability of the EM-SCA. To illustrate, 156

the 128-bit AES algorithm, which must be processed 16 times for each byte’s sub-keys, is 157

one example of an algorithm that must process data once for each byte’s sub-keys in order 158

to be cracked [18,19]. 159

EM traces may not correctly encompass the cryptographic operation within its perime- 160

ter and have varying lengths for various reasons. Sayakkara et al. [12] identified two 161

reasons why labelled EM trace data is unsuitable for direct use in machine learning-based 162

classification: the intrinsic variation in the amount of time needed to complete each crypto- 163

graphic computation and the delays in data collection software to initiate and terminate 164

EM sampling. However, by converting EM traces into the frequency domain using Fast 165

Fourier Transformation (FFT) [20,21], the discrepancies in lengths can be minimised. 166

The process of data gathering and processing is challenging due to the large file sizes 167

of EM trace data and the need for real-time analysis. Software-defined radio (SDR) devices 168

capture EM data and can differentiate signals in the frequency domain by capturing a large 169

bandwidth around the target frequency. However, their high sampling rates result in large 170

file sizes for EM trace data. To address this issue, Sayakkara et al. [12] suggests down- 171

sampling the data while maintaining the maximum possible bandwidth, which does not 172

negatively impact the performance. The authors highlight the need for real-time analysis 173

in live forensic analysis, where data preprocessing and classification must be performed 174

within a tight time frame to keep up with the real-time I-Q data stream. 175

Zhou and Standaert [22] propose a fast EM-SCA approach that drastically cuts the time 176

needed for an EM bypass attack by using FFT to remove noise from the original acquired 177

data. The revised approach allows for a maximum sample size of 256, reducing the number 178

of data processing operations by adopting plaintext for encryption. The improved approach 179

is 50 times faster than conventional methods. In another study conducted by Han et al. 180

[23], a sliding window function extracts EM signals from programmable logic controllers 181

(PLCs). This method computes each segment’s power spectral density, offering stable 182

frequency patterns resistant to noise. Varying the window size affects accuracy: smaller 183

windows capture finer details with reduced frequency resolution, while larger ones offer 184

better frequency clarity but might miss minor transitions. 185

Sayakkara et al. [12] extended approach by Zhou and Standaert [22] using a bucketing 186

approach, achieving over 90% accuracy in classifying between different software activities 187

of IoT devices with a very detailed granularity. On the other hand, Sayakkara et al. [1] 188

unveiled the EMvidence framework, automating data extraction and enhancing classifica- 189

tion, especially in analysing ECC cryptographic operations. Collectively, Sayakkara et al. 190

[1] studies illuminate the advancements in analysing IoT device emanations. Together, 191

[1,12,22] studies highlight the synergy of window functions and bucketing in analysing IoT 192

device emanations. These advancements in harnessing EM emanations for identifying IoT 193

device operations reveal the potential vulnerabilities and exposure points, especially when 194

it comes to detecting key lengths of cryptographic algorithms, e.g., AES and ECC. 195
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Recent advancements within the domain of EM-SCA are highlighted by a Iyer et al. 196

[24] which focused on the hierarchical classification of instructions based on near-field 197

electromagnetic measurements. Although this approach primarily addresses the disassem- 198

bly of executed instructions, it showcases the evolving sophistication in feature selection 199

and classification techniques, laying a methodological foundation that parallels the ob- 200

jectives of the current research. The precision in analysing EM signals for high-accuracy 201

instruction disassembly illustrates the broader potential of EM-SCA methodologies, even 202

beyond the domain of cryptographic insights. Such methodological advancements re- 203

flect the significance of the current study’s aim to precisely identify cryptographic key 204

lengths and algorithms, underscoring the importance of sophisticated signal analysis in the 205

ever-expanding field of digital forensics and cryptography. 206

Study/Approach Focus Contribution to EM-SCA Limitation Current Study’s Contri-
bution

Yu and Chen
[13]

AES cryptographic
circuit analysis

Retrieved AES key via
deep learning-based SCA,
correlating EM and power
noise

Focused on secret
key retrieval, not
on key length or al-
gorithm detection

Identifies key lengths and
algorithms in IoT devices

Sayakkara et al.
[12]

EM-SCA in IoT de-
vices

Used EM-SCA on Rasp-
berry Pi to detect encryp-
tion operations with neu-
ral networks

Focused on encryp-
tion operations,
not specifically
on key lengths or
algorithms

Focuses on identifying
key lengths and algo-
rithms in IoT devices

Won and Bhasin
[9]

EM sensor use in
cryptographic key
retrieval

Employed CPA with high-
sensitivity EM sensor for
AES-128 key retrieval

Specific to AES-128
key retrieval, not
generalizable to key
length or algorithm

Broadens EM-SCA scope
to include key length and
algorithm detection

Table 1. Comparison of EM-SCA advancements and the novel contribution of the current study

The studies mentioned above have significantly advanced the field of EM-SCA, pre- 207

dominantly focusing on the detection of cryptographic activities and differentiating be- 208

tween software operations. However, a gap remains in specifically identifying crypto- 209

graphic key lengths alongside the cryptographic algorithms within IoT devices [25]. This 210

research aims to bridge that gap by introducing a focused methodology for the concurrent 211

detection of both cryptographic key lengths and algorithms using EM-SCA. This novel 212

approach represents a methodological innovation, marking the first systematic attempt to 213

address these aspects together in the domain of digital forensics. It is precisely this gap–the 214

lack of targeted analysis for both key lengths and algorithms–that this study seeks to fill, 215

providing crucial insights particularly valuable in forensic scenarios where understanding 216

both parameters is essential for comprehensive EM-SCA. 217

While existing research, as showcased by Won and Bhasin [9], Sayakkara et al. [12], Yu 218

and Chen [13], and others, has laid a solid foundation in the application of EM-SCA for 219

cryptographic analysis, these studies have not simultaneously addressed the detection of 220

cryptographic key lengths and algorithms within a single framework. Table 1 summarises 221

these differences, underscoring the unique positioning of the current study within the 222

broader research landscape. 223
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3. Methodology for EM Emission Analysis from Cryptographic Devices 224

Figure 1. Electromagnetic Data Generation Step (adapted from [26])
This section outlines the methodology and techniques employed to capture and evalu- 225

ate EM emissions from a microcontroller, specifically the Arduino Nano, when executing 226

cryptographic algorithms. The intricate process seeks to establish whether these unin- 227

tentional emissions can betray information about the cryptographic operations taking 228

place. 229

The overarching framework is predicated on three pivotal stages: Data Acquisition, 230

Data Preprocessing, and Machine Learning Analysis – explained in detail in Sections 3.2 231

to 3.5. The modular construct not only serves as a tool for organisation but also provides a 232

robust foundation for future augmentations and modifications. 233

3.1. Dataset Overview 234

The collected dataset represents the EM signals detected during the implementation 235

of cryptographic operations, i.e., AES and ECC. These signals reside in the cfile format 236

and can be retrieved via pathways, e.g., AES128.16mhz.cfile. Every dataset undergoes 237

a uniform series of preprocessing protocols including windowing, FFT, bucketing, and 238

normalisation. Following these processes, the AES dataset assumes dimensions of 767,577 239

× 100, and the ECC dataset assumes dimensions of 767,740 × 100. This near equivalence 240

in size underscores the balanced class distribution within the dataset, a crucial factor for 241

unbiased machine learning model training and validation. In the final integration phase, 242

these two datasets are merged, resulting in a comprehensive dataset with dimensions 243

spanning 1,535,317 × 100. The comprehensive nature and balanced class representation 244

of this dataset provide a solid foundation for the subsequent machine learning analysis, 245

facilitating the development of robust and generalisable classification models. 246

3.2. Data Acquisition Module 247

This encompasses the whole range of tools and procedures employed to record raw 248

EM data. It relates to the instruments, the environmental conditions, software interfaces, 249

and the exact specifications of the devices in question. 250

The data acquisition process in this research conveys the foundational steps of col- 251

lecting and analysing the EM emissions from an Arduino Nano executing cryptographic 252

operations. This process requires a thorough setup that integrates both hardware and 253

software components, ensuring the accurate capture of emissions. This section provides 254

an in-depth overview of the hardware configuration, software infrastructure, and envi- 255

ronmental considerations that were critical in establishing the robust data acquisition 256

module. 257
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3.2.1. Hardware Configuration 258

At the core of this research is the HackRF One, a software-defined radio (SDR) chosen 259

for its precision, bandwidth capabilities, and adaptability. It is indispensable for capturing 260

high-quality EM emissions. The HackRF One and the Arduino Nano were USB-connected 261

to the same computer. While the Arduino Nano ran various cryptographic algorithms, 262

including AES128, AES192, AES256, ECC160, ECC192, and ECC256, the HackRF One 263

captured the associated EM emissions in real-time. Each emission capture, both for AES 264

and ECC, was set for a duration of 10 seconds, resulting in an average file size of approxi- 265

mately 466,776 kb. The HackRF One’s operational parameters were meticulously set: a 266

sample rate of 20 million samples per second and a central frequency of 16 MHz. This 267

frequency was particularly chosen as the primary channel of interest, reflecting significant 268

EM emissions from the Arduino Nano during cryptographic operations. 269

3.2.2. Software Infrastructure 270

For programming the Arduino Nano, the Arduino IDE was utilised. The cryptographic 271

tasks embedded in the Arduino Nano made use of specific libraries sourced from GitHub. 272

The AES tasks were achieved using the AES library obtained from Davy [27], and ECC 273

tasks were executed with the micro-ecc library from Ken [28]. 274

In the study, AES encryption was implemented using single block functions, e.g., 275

aes128_enc_single and aes128_dec_single, from the AESLib library. These functions 276

process a single block of data independently, aligning with the Electronic Codebook (ECB) 277

mode of operation. While ECB mode offers simplicity and effectiveness for controlled 278

experimental setups, it is important to recognise that unlike Cipher block chaining (CBC) 279

mode, ECB does not involve chaining of blocks, which may have implications for security 280

in practical cryptographic contexts. 281

The ECC implementation in this research employed curves such as secp160r1, secp192r1, 282

and secp256r1 from the micro-ecc library, with a particular focus on key generation and 283

signature verification processes. The choice of curves was based on considerations of 284

computational efficiency and security requirements, reflecting standard practices in digital 285

forensics and IoT device security. 286

It is noteworthy that the AESLib library supports both single block and CBC mode 287

operations; however, the specific implementation for this study did not utilise bitslicing 288

techniques or elaborate on countermeasures against SCA. 289

Similarly, the micro-ecc library’s known resistance to side-channel attacks adds a layer 290

of inherent security to the ECC component of the study. However, the specific nature and 291

implementation of these countermeasures within the library are not extensively detailed in 292

this research. The focus was on employing standard ECC functions relevant to the study’s 293

objectives and compatible with the cryptographic protocols prevalent in the intended 294

application scenarios. 295

Both the AES and ECC algorithms were programmed to continuously execute their 296

respective encryption and decryption operations in a loop for a duration of 10 seconds. This 297

configuration ensured a steady stream of EM emissions for analysis and was crucial for the 298

consistent capture of data characteristic of each cryptographic process (see Algorithm 1). 299

This methodological choice, while beneficial for controlled data collection, represents 300

a specific operational mode that may differ from the varied cryptographic activities in 301

real-world IoT device usage. 302

Regarding the data collection setup, the HackRF One was used in conjunction with 303

the Arduino Nano to capture electromagnetic emissions during cryptographic operations. 304

The Arduino Nano, executing the cryptographic algorithms, was placed in proximity to the 305

HackRF One. The HackRF One, a software-defined radio, served as a sensitive receiver to 306

detect and record the EM emissions generated by the Arduino Nano during its operation. 307

The setup did not require a direct electrical connection between the HackRF One and the 308

Arduino Nano, as the HackRF One was capable of capturing the EM emissions wirelessly. 309
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Algorithm 1: General structure of Arduino programs for AES and ECC opera-
tions

Result: Capture EM emissions for AES and ECC operations

AES Operations:
Initialise serial communication
for each AES key length in {128, 192, 256} do

while True do
key← Define AES key of the current length
encrypted← Perform encryption with key
decrypted← Perform decryption with key
Capture EM emissions

end
end

ECC Operations:
Initialise serial communication
for each ECC key length in {160, 192, 256} do

while True do
key_pair← Generate ECC key pair
signature← Perform signature generation
verification← Perform signature verification
Capture EM emissions

end
end

Data collection was managed through the hackrf_transfer utility, a command-line 310

tool operating in a Linux virtual environment provided by Oracle. The specific command 311

for data acquisition was hackrf_transfer -s 20e6 -f 16e6 -r name-data.cfile, en- 312

suring consistent and accurate capture of the EM emissions. 313

Figure 1 provides a visual representation of the data flow and analytical procedures. 314

From the host computer, two pathways emerge: an offline pathway for capturing EM traces, 315

which undergo Fourier transformation, channel identification, and subsequent EM-SCA, 316

and a real-time data pathway that directly engages in EM-SCA, utilizing insights from 317

the identified 16 MHz channel. This dual-pathway approach facilitates a balance between 318

comprehensive offline analysis and the agility required for real-time monitoring. 319

3.2.3. Environmental Considerations 320

EM emissions can be influenced by surrounding electronic devices, architectural 321

barriers, and fluctuations in power sources. Ensuring a consistent environment for data 322

capture from the HackRF One and Arduino Nano, therefore, was paramount. To mitigate 323

potential interference, a custom Faraday cage was constructed. Starting with a plain 324

box, both its exterior and the interior walls were meticulously lined with aluminium foil, 325

creating a shielded environment. Specifically, Rawal et al. [29] highlights the effectiveness 326

of aluminium foil in providing an electrically-conductive surface for EMI shielding and 327

electrostatic dissipation in spacecraft structures. This design choice significantly reduced 328

external EM interference. With the device under test and the electric field probe both placed 329

securely inside this shielded box, it ensured that the recorded emissions predominantly 330

originated from the Arduino Nano’s cryptographic operations 331

3.3. Data Preprocessing Module 332

Once raw data is captured, it is infrequently in a format amenable to immediate 333

analysis. Preprocessing refines this raw information into a structured and standardised 334

form that can be processed and analysed efficiently. 335
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The data preprocessing module is crucial in refining and preparing raw In-phase 336

and Quadrature (IQ) data, which are representations of complex signals, for subsequent 337

analysis. This stage covers various steps, ranging from segmenting the continuous data 338

stream and reducing its dimensionality, to normalising and labelling the processed data. 339

The data is transformed into a structured format suitable for machine learning applications 340

through techniques such as the sliding window and overlap mechanism, bucketing and 341

dimensionality reduction, as well as data normalisation, aggregation, and labelling. The 342

subsequent subsections delve into the specifics of each of these processes. 343

3.3.1. Sliding Window and Overlap Mechanism 344

The iq class, developed specifically for this project, offers streamlined handling of IQ 345

data with functionalities such as reading data, extracting segments, and determining data 346

time duration. Memory mapping ensures efficient dataset management without memory 347

overload. Segmenting the massive streams of raw data is a task of significant importance. 348

The sliding window technique serves this purpose, offering a systematic approach to 349

segmenting data into consistent and manageable chunks. Each window captures a snippet 350

of data, and the subsequent window is overlapped by 80%, ensuring continuity and 351

comprehensive capture of potential patterns. The rationale for such overlap is grounded in 352

the need to prevent data loss or missing out on transient yet significant events that might 353

be pivotal in the later analysis stages. In other words, the overlap ensures continuity and 354

captures patterns that might emerge at the boundaries of these windows. In relation to 355

the recorded traces, the cryptographic algorithms’ continuous operation for 10 seconds 356

without pauses resulted in a consistent emission of EM signals. The sliding window size 357

was strategically chosen to capture significant portions of the cryptographic operation’s 358

waveform. The sliding window approach is utilised to segment the continuous data stream 359

into smaller frames or windows. To realise this, windows are crafted with a size of 1,000 360

samples, with an 80% overlap between consecutive windows. Specifically, the window 361

size of 1,000 samples, with an 80% overlap, was determined to provide an optimal balance 362

between capturing the entirety of the operational waveform and ensuring efficient data 363

processing. This window size corresponds to a segment of the cryptographic operation, 364

providing a representative snapshot of the EM emissions for analysis Subsequently, the FFT 365

is employed to convert these windows from the time domain into the frequency domain. 366

Figure 2 provides a visual representation of the application of the sliding window and FFT 367

on the dataset, essentially depicting how the FFT of the data looks after segmenting it using 368

the sliding window approach. 369

Figure 2. Original FFT of the First Window for AES128
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3.3.2. Bucketing & Dimensionality Reduction 370

Given the vast data points within each window, the bucketing method significantly 371

simplifies the data landscape. By categorising and averaging data within defined ranges or 372

"buckets", the data complexity is substantially reduced. This method prepares the data for 373

machine learning applications, reduces computational overhead and lessens the possibility 374

of overfitting. The choice of bucket size, the number of buckets, and the data aggregation 375

technique within each bucket are informed by preliminary data analyses and the data’s 376

unique attributes. In the current setup, the FFT data undergoes segmentation into 100 377

buckets, with each bucket’s representative value being its maximum. The experiment 378

conducted the entire length of the FFT window is divided by the number of buckets 379

to determine each bucket’s size. This dimensionality reduction strategy is significant, 380

especially when handling large datasets or complicated signal frameworks. It ensures that 381

subsequent analyses are efficient and streamlined. Figure 3 demonstrates the bucketing 382

method on the FFT data, providing insight into how dimensionality reduction techniques 383

simplify datasets for more efficient analysis. 384

Figure 3. Bucketed and Normalised FFT of the First Window for AES128

3.3.3. Data Normalisation, Aggregation & Labelling 385

Upon obtaining the data windows, normalisation of the data is imperative to maintain 386

a consistent scale across all feature values. The normalisation technique employed scales 387

the data by dividing it by the maximum absolute value, thereby constraining the amplitude 388

range between -1 and 1. Following normalisation, the processed data from AES and 389

ECC algorithms are aggregated. The aggregated data arrays, e.g., all_data_aes and 390

all_data_ecc, combine the processed data respective to each cryptographic algorithm. 391

An integral component of the data preparation for machine learning tasks is labelling, 392

which facilitates the association of data with its corresponding cryptographic algorithm. 393

Contrary to labelling each data segment based on its sequential position in the processed 394

list, this study adopts a categorical labelling approach. Specifically, in the AES dataset, all 395

segments derived from AES128, AES192, and AES256 operations are labeled with distinct 396

identifiers corresponding to each AES variant. A similar approach is adopted for the ECC 397

dataset, where segments are labelled according to the specific ECC curve utilized, such as 398

ECC160, ECC192, or ECC256. 399

This labelling strategy is not only consistent within each group of segments represent- 400

ing a specific cryptographic operation but also aligns with the classification tasks of the 401

study, which categorize data into distinct classes based on the cryptographic algorithms 402

and configurations. Therefore, the labels serve to distinguish between various types of 403

cryptographic activities, aiding the machine learning models in learning and differentiating 404

EM emission characteristics associated with each cryptographic algorithm 405
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3.4. Feature Selection & Dimensionality Analysis 406

Figure 4. Correlation-based Feature Analysis

Upon the completion of data preprocessing and transformation, the dataset exhibited 407

well-defined dimensions. For the AES cryptographic operations, the dataset contained 408

767,577 samples, each having 100 distinct features. Similarly, the ECC operations yielded 409

a dataset comprising 767,740 samples with the same feature count. Combining both AES 410

and ECC datasets resulted in a comprehensive dataset encompassing 1,535,317 samples 411

and 100 features. 412

Each of these features represents the amplitude value of a specific frequency bucket, 413

which was derived from the FFT transformation of the EM emissions. Given the high 414

dimensionality, it was essential to inspect the data for redundancies and correlate features 415

that might introduce overlap, thereby possibly affecting the efficiency and performance of 416

machine learning models. 417

A correlation-based feature analysis was employed to this end. A correlation matrix 418

was generated, visualising inter-feature dependencies. This matrix is illustrated in Figure 4. 419

Features exhibiting a correlation coefficient exceeding 0.85 with another feature were 420

deemed redundant. Such a high correlation suggests that one feature can be predictive of 421

the other, rendering one of them redundant for this analysis. As a result of this correlation 422

analysis, six features were identified as extraneous and were subsequently removed from 423

the dataset. This reduced the feature count from an initial 100 to 94. After this feature 424

selection process, the data retained its diversity in representing the EM emissions but 425

was optimised to ensure better performance and accessibility of the subsequent machine 426

learning tasks. 427
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3.5. Machine Learning Pipeline and Evaluation 428

An extensive and structured pipeline was developed in an effort to evaluate the effec- 429

tiveness of the selected machine-learning models. Data preparation is essential to ensure 430

the efficacy of any machine learning model. To this end, the dataset was separated into 431

training and test subsets using the train_test_split function. This particular function 432

ensured a stratified split, thereby maintaining the proportion of samples for each class. To 433

further bolster the performance of the models, the dataset underwent a standardisation pro- 434

cess using the StandardScaler from the Scikit-learn library. In the conducted experiments, 435

an 80% training and 20% test split ratio was employed, following the standard practice in 436

machine learning for comprehensive model training and evaluation. 437

Recognising that model performance might oscillate based on the specific subset 438

of data it is trained upon, a robust 5-fold cross-validation was incorporated using the 439

StratifiedKFold method. This strategic approach splits the training data into five distinct 440

subsets. The model undergoes training five times, each instance using a different subset as 441

its validation set. 442

To delve deep into the details of model performance, a variety of metrics including 443

precision, accuracy, and the F1 score, were employed. These metrics, essential indicators 444

of model performance, were extracted using a set of functions available in Scikit-learn’s 445

metrics module. Accuracy was chosen as a primary indicator of the overall correctness 446

of the model, representing the proportion of true results (both true positives and true 447

negatives) among the total number of cases examined. Precision was deemed crucial for 448

measuring the reliability of the model’s positive predictions, ensuring that the identified 449

cryptographic classes are truly correct and minimising false-positive rates, which is essential 450

in the forensic context where false leads can be costly. The F1 score, a harmonic mean of 451

precision and recall, was included as a balanced metric that considers both the precision 452

and the recall of the classification model. This is particularly important in scenarios where 453

an even balance between the detection of true positives and the avoidance of false negatives 454

is crucial, reflecting a more nuanced view of the model’s predictive power. The generation 455

of a confusion matrix provided a more detailed understanding of the model’s potential 456

limitations by highlighting the proportion of accurate and incorrect predictions. 457

The experimentation phase was highlighted with the deployment of a diverse array of 458

classifiers, covering Logistic Regression, Random Forest, XGBoost, LightGBM, and Support 459

Vector Machine (SVM). Each model, with its unique strengths, was meticulously selected 460

to proffer a comprehensive overview of the dataset’s behaviour under varying algorithms. 461

As the experimentation unfolded, each model was rigorously evaluated against the test set, 462

with the results effectively visualised through confusion matrices. 463

The research focuses on systematically exploring EM emissions arising from cryp- 464

tographic operations on the Arduino Nano. This chapter outlines a sequential approach 465

to experimentation. Initially, a broad 6-class classification is introduced, followed by a 466

more detailed 3-class distinction for both AES and ECC. The sequence culminates in a 467

binary classification, distinguishing between the overarching AES and ECC cryptographic 468

families. 469

3.6. Six-Class Classification Approach 470

The initial experiment undertakes the intricate task of interpreting EM emissions from 471

the Arduino Nano during specific cryptographic operations. The focus rests squarely on 472

six cryptographic algorithms: AES128, 192, 256 and ECC160, 192, 256. Each of these was 473

categorised as a distinct class, enabling a foundational understanding of the emission 474

patterns intrinsic to them. 475

The use of five well-known machine learning models—Logistic Regression, XGBoost, 476

Random Forest, LightGBM, and SVM—was a key component of this research. The models 477

were configured with specific parameters to optimise their performance for this task. 478

Logistic Regression was implemented with a maximum iteration limit of 10,000. The 479

Random Forest Classifier was used with its default settings. For the XGBoost classifier, 480
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label encoding was disabled, and log loss was set as the evaluation metric. LightGBM 481

was employed in its standard configuration. Each model’s effectiveness was illustrated in 482

Figure 5 by its unique confusion matrix following thorough training on a single dataset. 483

Such a tool enabled a thorough comparison of the models in addition to summarising the 484

categorisation results. 485

A pattern of note depicted in Figure 5 emerged across the models was the recurrent 486

difficulty in teasing apart the AES128 from the ECC160 classes. Specifically, confusion 487

matrix values in the range of 0 to 50,000 indicate a considerable number of instances where 488

emissions from AES128 were misclassified as ECC160 and vice versa. This considerable 489

overlap in model predictions, while not statistically assessed for significance, suggests 490

that the EM emission patterns for AES128 and ECC160 share similar characteristics that 491

the models consistently misinterpret. This observation is of practical importance as it 492

highlights the need for further refinement in feature engineering or model selection to 493

clearly distinguish between these two classes of EM emissions. 494

Table 2. Performance Metrics of Machine Learning Models on Combined Data AES and ECC

Model Accuracy Precision F1 Score

Logistic Regression 0.9403 0.9402 0.9402
Random Forest 0.9135 0.9134 0.9132
XGBoost 0.9358 0.9356 0.9357
LightGBM 0.9303 0.9302 0.9302
SVM 0.9455 0.9454 0.9455

Table 2 presents a systematic comparison of the performance metrics associated with 495

each model. Emphasis is placed on pivotal metrics such as Test Set Accuracy, Test Set 496

Precision, and Test Set F1 Score. Among the models evaluated, the SVM model stood out. 497

Despite the inherent challenges associated with this form of classification, SVM achieved a 498

solid Test Set Accuracy of 94.55%. Its precision, and F1 Score metrics further attest to its 499

adeptness in managing such a sophisticated classification challenge. 500

3.7. Dissecting AES and ECC: A Three-Class Classification 501

Once the initial experiment has established the fundamental ideas, the experiment 502

switches to a more exploration. This step aims to identify the fine distinctions between the 503

AES and ECC cryptography classes by categorisation of each variant’s modifications. To 504

embark on this exploration, the merged datasets of AES and ECC were separated back into 505

their original structures. Before feeding these datasets into the machine learning models, 506

the previously applied preprocessing steps and feature selection methods were reapplied 507

to ensure consistency and to retain the optimised feature set. The previously chosen five 508

machine learning models were then re-employed, training each model separately on the 509

AES and ECC datasets. 510

The Logistic Regression model was again parameterised with a maximum iteration 511

limit of 10,000 to ensure convergence. The Random Forest and LightGBM classifiers were 512

utilized with their default parameters, considering their prior effectiveness. XGBoost was 513

configured with the label encoding disabled and log loss as the evaluation metric, main- 514

taining the setup from the previous experiment. The SVM, crucial for its high-dimensional 515

feature-handling capability, was employed with its default kernel. Significant measures, 516

such as Test Set Accuracy, Precision, and F1 Score were taken into consideration to evaluate 517

model effectiveness. 518

Detailed performance metrics of each model for both AES and ECC datasets are tabu- 519

lated in Table 3. To provide a visual insight into the most successful model’s classification 520

ability, Figure 6 displays the confusion matrix of the Logistic Regression model – the model 521

that recorded the highest accuracies for both AES and ECC classifications. This visual 522

representation serves to validate the tabulated performance metrics and offers an imme- 523

diate glimpse into the class-wise predictions. Remarkably, Logistic Regression emerged 524
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(i) Logistic Regression (ii) Random Forest

(iii) XGBoost (iv) LightGBM

(v) SVM on Combined Data
Figure 5. Confusion Matrices for Logistic Regression, Random Forest, and XGBoost in Combined AES and ECC Data
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Figure 5. (Continued) Confusion Matrix for LightGBM and SVM in Combined AES and ECC Data

as the most proficient model for both AES and ECC classifications, recording accuracies 525

of 98.47% and 98.76% respectively. Table 3 underscores the model’s ability to distinguish 526

these cryptographic operations’ unique EM signatures. 527

Comparing this experiment with the earlier six-class classification, some marked 528

differences are apparent. In the six-class categorisation, the SVM stood out, excelling in 529

differentiating among the various classes. One could attribute this to SVM’s inherent 530

strength in dealing with higher dimensional spaces, especially when there are boundaries 531

that distinctly separate classes. However, when the classification task became more specific, 532

focusing on the characteristics within the AES and ECC classes, Logistic Regression proved 533

superior. This can be rationalised by understanding the nature of these cryptographic 534

classes. The differences within the variants of AES and ECC might be more linearly 535

separable, making it a favourable scenario for Logistic Regression. Logistic Regression, 536

as a linear model, excels when there is a linear relationship between the input features 537

and the log odds of the output. In this case, the EM signatures within the AES and ECC 538

cryptographic classes could exhibit such linear patterns, which Logistic Regression could 539

efficiently capture. 540

Table 3. Performance Metrics of Models for AES and ECC Data.

Model AES Data ECC Data
Accuracy Precision F1 Score Accuracy Precision F1 Score

Logistic Regression 0.9847 0.9847 0.9847 0.9876 0.9876 0.9876
SVM 0.9807 0.9808 0.9807 0.9834 0.9834 0.9834
Random Forest 0.9674 0.9675 0.9674 0.9651 0.9651 0.9651
XGBoost 0.9788 0.9789 0.9788 0.9816 0.9816 0.9816
LightGBM 0.9757 0.9757 0.9757 0.9768 0.9768 0.9768

Table 4. Performance Metrics for each Model in the Binary Classification Task.

Model Accuracy Precision F1 Score
Logistic Regression 0.9501 0.9502 0.9501
Random Forest 0.9427 0.9433 0.9427
XGBoost 0.9535 0.9536 0.9535
LightGBM 0.9473 0.9476 0.9473
SVM 0.9597 0.9598 0.9597

3.8. The Binary Face-off: AES versus ECC 541

The final experiment in the series simplified the classification task into a binary format. 542

The main goal was to differentiate between the two major cryptographic categories: AES 543

and ECC. Instead of considering the many different subtypes within each category, this 544

experiment treated all subtypes of AES as one group and all subtypes of ECC as another 545

group. This approach developed a more precise and direct comparison between AES and 546

ECC. 547

To begin this experiment, all subtypes under AES and ECC were grouped into their 548

respective overarching categories. This approach made the differences between the two 549

main groups more pronounced. The previously selected machine learning models were 550

adapted for this binary classification, with each being fine-tuned as follows: 551

• Logistic Regression: Deployed with a maximum iteration limit of 10,000 and the 552

solver set to handle multi-class classification inherently via the ’ovr’ (one-vs-rest) 553

approach, which is the default strategy in Scikit-learn for binary tasks. 554
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(i) AES (ii) ECC
Figure 6. Confusion Matrices for Logistic Regression on AES and ECC Classifications

• SVM: Utilised with its default kernel and internally adapted to multi-class classi- 555

fication using the one-vs-one strategy, which constructs one classifier per pair of 556

classes 557

• Random Forest: This model naturally accommodates multi-class classification without 558

any additional mechanism required 559

• XGBoost and LightGBM: Both models inherently support multi-class classification 560

and were configured with their respective multi-class objective functions. 561

The effectiveness of the models was assessed using the same metrics, i.e., Test Set 562

Accuracy, precision, F1 Score, and the confusion matrix. Table 4 provides a detailed 563

overview of the performance metrics for each model in this binary classification task. 564

To offer a clearer visual insight into the classification patterns of the models, Figure 7 565

showcases the confusion matrices of the outperforming representative models, chosen 566

based on their performance. In this refined setup, the SVM model distinguished itself, 567

registering a Test Set Accuracy of 95.97%. This strong performance of the SVM in the binary 568

classification contrasts with its results in earlier experiments. One possible explanation is 569

that the SVM, which uses decision boundaries to classify data, performs exceptionally well 570

when there are only two main groups to differentiate. This can be different in multi-class 571

situations where the differences between groups can be less precise. There are apparent 572

differences in the most prominent models when comparing this binary experiment to 573

past multi-class examinations. SVM excelled in the 6-class experiment, whereas Logistic 574

Regression outperformed AES and ECC in the 3-class comparison. 575

4. Discussion 576

An in-depth examination of the EM emissions produced by cryptographic operations 577

on the Arduino Nano is carried out in the research described in Section 4, revealing 578

significant patterns, particularly from a digital forensic standpoint. The studies reveal how 579

various cryptographic algorithms differ, yet they additionally reveal the possibility for 580

forensic implementation in the real world. The detailed nature of the experimental results, 581

the implications for digital forensic investigations, the inherent limitations of the current 582

method, and the proposed research roadmap are all covered in this section, which goes 583

deeper into these findings. 584

4.1. Observations and Implications 585

Analysing EM emissions from cryptographic operations on the Arduino Nano offers 586

essential insights into cryptographic algorithm behaviour and the efficacy of different ma- 587
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Figure 7. Confusion Matrix for SVM on Binary Classification

chine learning models in classifying them. The research unveils distinct variations in model 588

performance based on classification complexity, challenges resulting from overlapping EM 589

emission patterns, and the shifting dominance of certain models across different classifica- 590

tion experiments. These findings underscore the sophisticated nature of EM emissions in 591

cryptographic processes and the importance of strategic model selection. The subsequent 592

subsections provide a more granulated exploration of these observations. 593

4.1.1. Machine Learning Model Selection: 594

Six-Class Classification: In the multifaceted 6-class classification, the SVM model no- 595

tably outperformed the others with a success rate of 94.55%. Although Logistic Regression 596

followed closely at 94.03%, SVM’s proficiency in dealing with higher-dimensional spaces 597

appeared to provide it an edge. It effectively distinguished between the six cryptographic 598

algorithms, even when some of them demonstrated similar patterns This indicates that for 599

tasks involving several closely related classes, the SVM model could be a preferred choice. 600

Three-Class Classification: Remarkably, when the details within the AES and ECC 601

categories were closely examined, Logistic Regression became the standout model with an 602

impressive accuracy of 98.47% on AES data and 98.76% on ECC data. This might suggest 603

that within these general categories, the differences can be separated by a straight line. 604

Logistic Regression, which fundamentally uses a linear approach, works exceptionally well 605

in such situations. Therefore, when identifying small differences within large categories, 606

Logistic Regression can be absolutely effective. 607

Binary Classification: In the direct comparison between AES and ECC, the SVM 608

model’s performance was particularly commendable with a performance of 95.97% com- 609

pared to the 95.35% achieved by XGBoost. When faced with a binary classification task 610

that required distinguishing between these two cryptographic categories, SVM effectively 611

established between the datasets. This suggests that SVM is capable of handling chal- 612

lenges where data groups are more distinctly defined. Such an observation underscores the 613

model’s adaptability and proficiency, emphasising its relevance in varied cryptographic 614

classification challenges. 615

4.1.2. Challenges of EM Emission Patterns: 616

Overlapping Traits: The observed overlaps, notably between AES128 and ECC160 617

in the 6-class experiment, suggest that not all cryptographic operations have distinctly 618

unique emission patterns. Such overlaps could pose challenges in real-world scenarios 619

where precise differentiation is crucial. It indicates the need for further research to delve 620

deeper into these overlaps, potentially uncovering hidden patterns or requiring refined 621

feature engineering techniques. 622
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4.1.3. Comparative Analysis of Classification Approaches 623

Shifting Model Dominance: The experiments revealed a shifting dominance between 624

models. For instance, while SVM was the leading model in the 6-class experiment, the AES 625

and ECC classifications saw Logistic Regression emerge as notably superior. This variation 626

highlights the detailed nature of EM emission patterns and emphasises the importance of 627

continual testing and validation in practical scenarios. 628

Moreover, while binary classification improved the clarity of distinctions between 629

primary cryptographic mechanisms, the three-class classification, especially with Logistic 630

Regression, achieved the highest accuracy in the experiments. It is evident that when draw- 631

ing specific distinctions within broader cryptographic categories, a three-class approach 632

could offer better outcomes. 633

4.2. Analysing EM Emission Patterns in Relation to AES Key Lengths and Rounds 634

The correlation between the key length of AES and the corresponding number of 635

rounds executed is a critical factor in determining distinct EM emission patterns. Specifi- 636

cally, as the key length varies among 128, 192, or 256 bits, the number of AES rounds—10, 637

12, or 14, respectively—alters accordingly. This alteration in the number of rounds signifi- 638

cantly impacts the timing and characteristics of the cryptographic operations, potentially 639

creating distinguishable patterns in the EM emissions associated with different key lengths. 640

The subtlety of these distinctions in EM emissions, relative to the key length, necessi- 641

tates an evaluation of whether they require sophisticated analysis or could be discerned 642

through visual inspection by a knowledgeable investigator. The study presented does not 643

solely focus on the apparent timing differences but investigates the more nuanced EM emis- 644

sions that are not readily discernible through mere visual inspection. This comprehensive 645

approach is justified, particularly in forensic scenarios, where EM environments are often 646

complex or noisy. Timing differences, while potentially noticeable, may not consistently 647

yield conclusive or easily interpretable data, underscoring the need for more advanced 648

analytical methods to accurately interpret EM emission patterns associated with varying 649

AES key lengths. 650

4.3. Digital Forensic Perspective 651

The implications of discerning EM emissions from cryptographic operations extend be- 652

yond mere academic interest. From the lens of digital forensic investigations, these findings 653

can fundamentally improve the toolkit of forensic experts. Cryptographic Operations De- 654

tection: A crucial concern in digital forensic investigations is the identification of encrypted 655

content. The methodologies detailed in this research equip investigators with the ability 656

to determine if a seized device is currently processing cryptographic operations. Such 657

knowledge serves as an initial checkpoint, hinting at the probable existence of encrypted 658

data, and enabling investigators to strategise their approach more effectively. 659

Essential Length Determination: Delving into the findings from the 6-class, 3-class, and 660

binary classifier experiments, a remarkable revelation emerges: the potential to pinpoint key 661

lengths. Differentiating between AES and ECC variants is not merely an academic exercise; 662

in the hands of forensic professionals, this differentiation translates to valuable insights. 663

Experts gain foresight into the cryptographic mechanism’s complexity by deducing key 664

lengths and their corresponding algorithms, facilitating more precise decryption strategies. 665

Accelerated Investigation Process: The complexity of digital forensic investigations is often 666

compounded by the vast amounts of data investigators cope with. By leveraging the 667

suitable machine learning model tailored to the classification task at hand, investigators 668

can accelerate their data processing endeavours. Rapid classification not only accelerates 669

investigations but also provides forensic experts with more timely and enforceable insights. 670

Profiling and Cross-Device Application: In a forensic context, profiling cryptographic 671

operations is essential to establish a baseline for comparison with suspect devices. Typically, 672

an equivalent device or a similar model would be used for initial profiling and training of 673

the machine learning models. This process would involve capturing EM emissions from 674
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the reference device under controlled conditions to create a comprehensive training dataset. 675

However, a challenge arises in the direct application of this method to different devices in 676

a forensic scenario. Variations in hardware and software configurations between devices 677

can lead to differences in EM emission patterns. Therefore, it’s crucial to investigate and 678

address the model’s capability to generalise across different devices. 679

In the realm of digital forensics, the importance of understanding cryptographic 680

elements, such as key length and encryption algorithms, becomes evident in scenarios 681

involving devices like IP cameras frequently encountered in crime scenes. These devices, 682

which are integral in continuous surveillance, capture, record, and encrypt data consistently. 683

In the forensic examination of such devices, particularly when retrieved from a crime scene, 684

the preliminary step often involves deciphering the cryptographic scheme employed. This 685

is crucial before delving into the more complex process of key recovery. 686

For instance, in the case of an IP camera, forensic investigators first need to identify 687

the encryption algorithm and key length used. This initial step is vital for multiple reasons. 688

It assists in understanding the security measures implemented in the device, narrows down 689

the potential methods for key recovery, and helps in estimating the effort and resources 690

required for a successful decryption. Additionally, this knowledge can guide investigators 691

in selecting the appropriate tools and techniques for further analysis. The identification of 692

key characteristics thus serves as a foundational aspect of digital forensic investigations, 693

enabling a more targeted and efficient approach to retrieving encrypted evidence. 694

Beyond the example of IP cameras, the methods developed in this research hold 695

significant potential in a variety of forensic situations. For instance, in cases involving 696

mobile devices or wearable technology, where encrypted data plays a crucial role in investi- 697

gations, understanding the encryption algorithm and key length can be instrumental. In 698

such scenarios, the preliminary identification of these cryptographic elements can aid in 699

narrowing down the device’s operational parameters, guiding the forensic process in a 700

more focused direction. This becomes particularly important in complex systems where 701

multiple encryption schemes may be employed, and traditional key recovery methods 702

may be impractical or time-consuming. By equipping forensic experts with the ability to 703

quickly ascertain these cryptographic details, the research contributes to more efficient and 704

effective forensic analysis across a spectrum of digital devices. 705

Furthermore, this approach can be instrumental in cases where the encryption key itself 706

cannot be directly recovered, but knowledge of the algorithm and key length can provide 707

indirect insights into the nature of the encrypted data and its potential origins [25]. Such 708

capabilities are increasingly vital in the fast-evolving landscape of digital forensics, where 709

adaptability and precision are key to addressing the sophisticated encryption methods 710

used in modern digital devices. 711

4.4. Limitations and Future Directions 712

This research, while fundamental in understanding cryptographic operations on 713

the Arduino Nano, raises important considerations for broader applicability and future 714

enhancements. The study primarily focused on the specific EM emission profile of the Ar- 715

duino Nano. Although the results are insightful, their generalisation across diverse devices 716

remains an area of concern in the rapidly changing digital landscape. The importance of 717

accounting for hardware variability cannot be overstated, especially when adapting these 718

findings to real-world forensic contexts. 719

Furthermore, the 6-class classification highlighted certain overlaps in EM traits. While 720

these overlaps present academic interest, they also carry observable risks in real-world 721

classifications, potentially causing misidentifications. This underscores the need for in- 722

depth future research to refine feature engineering techniques or employ advanced model 723

architectures. The study’s reliance on machine learning introduces challenges tied to model 724

fit and generalisation. Although the models mapped known cryptographic operations 725

effectively, their potential to adapt to novel or unseen operations requires validation. This 726
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could involve exposing these models to a range of new cryptographic operations to ensure 727

they remain resilient to overfitting while maintaining their predictive strength. 728

Another noteworthy limitation of this study is the context in which the machine- 729

learning models were trained and evaluated. The models were developed by running the 730

encryption algorithms (AES/ECC) exclusively on the Arduino Nano without the concurrent 731

operation of other applications. This approach, while beneficial for controlled analysis 732

and initial understanding, does not fully encapsulate the multifaceted nature of real IoT 733

environments where these devices often interact with various sensors and actuators. In 734

practical scenarios, the electromagnetic signature of such devices would likely be different 735

and more complex due to these interactions, potentially impacting the model’s accuracy 736

and generalisability. Acknowledging this, it is important to note that the current study 737

lays the groundwork for future research in this area. Future studies could aim to test 738

and refine these models in more representative IoT settings, involving a full spectrum of 739

device operations. This progression would offer a more comprehensive understanding of 740

EM-SCA’s applicability in real-world digital forensic contexts. However, due to the scope of 741

this initial study, such an extensive investigation was not feasible. The exploration of these 742

models in more complex IoT scenarios remains an important avenue for future research, 743

promising to enhance the practical applicability and robustness of the methodologies 744

proposed. 745

An inherent limitation of the study arises from the experimental design where AES 746

and ECC algorithms were continuously run in a loop. This setup, while facilitating data col- 747

lection and analysis, does not fully emulate the sporadic or diverse nature of cryptographic 748

operations in practical IoT applications. Additionally, the classification model developed 749

in this research did not include a class for periods devoid of cryptographic activity (’no 750

cryptography’). The inclusion of such a class would enhance the model’s capability to 751

distinguish between cryptographic and non-cryptographic periods, thereby improving its 752

applicability and relevance in forensic contexts. 753

To ensure the immediate real-world applicability and relevance of these findings, 754

establishing collaborations with industry experts and practitioners in the domain of cryp- 755

tography and digital forensics would be invaluable. Such partnerships could provide direct 756

feedback from the field, ensuring that the research remains connected to pressing industry 757

challenges and offers concrete, actionable insights. 758

In considering the evolution of this research, the development of an end-to-end 759

system becomes a prominent direction. Such a system would autonomously preprocess an 760

uploaded cfile file and determine the cryptographic key length, broadening the accessibility 761

of the findings to a wider audience, including non-experts. For optimal accuracy and broad 762

applicability, the inclusion of a diverse range of cryptographic algorithms, i.e., RSA and 763

DES, is essential. Additionally, diversifying the hardware base beyond the Arduino Nano 764

and incorporating various microcontrollers can enhance the system’s versatility. 765

5. Conclusion 766

The study set out with the central aim of highlighting the capability of EM-SCA 767

in digital forensics, emphasising its potential to identify key lengths and cryptographic 768

algorithms in devices. The Arduino Nano, chosen to represent typical IoT devices, was 769

at the core of this exploration. An extensive analysis of the EM emissions generated by 770

the Arduino Nano’s cryptographic operations was performed in pursuit of this objective. 771

Through comprehensive evaluation, different emission patterns were discovered that are of 772

significant interest in the field of digital forensics. The machine learning models deployed 773

presented varying proficiency levels across diverse classification tasks. In the intricate 6- 774

class classification, the SVM model emerged dominant, registering an impressive accuracy 775

of 94.55%, marginally surpassing Logistic Regression at 94.03%. It not clear from these 776

findings that SVM’s capability in handling high-dimensional spaces gives it a marked 777

advantage, especially when discerning among multiple cryptographic algorithms that may 778

bear resemblance. Shifting the focus to the three-class classification, Logistic Regression 779
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showed outstanding performance with an accuracy of 98.47% for AES data and 98.76% 780

for ECC data. This attests to its capability to distinguish subtle variances within broad 781

cryptographic categories. Furthermore, for binary classification tasks, especially between 782

AES and ECC, SVM again displayed its prowess, achieving an accuracy of 95.97%, slightly 783

ahead of the 95.35% from XGBoost. 784

However, alongside these promising results, challenges arose. The overlapping EM 785

traits in certain classifications underscore the need for enhanced feature engineering tech- 786

niques or refined model architectures. Furthermore, although the study provided an 787

insightful analysis of the Arduino Nano, its generalisation to a wide range of other devices 788

has not been fully explored. In order to ensure that the findings are reliable and up-to-date, 789

it is crucial to assess the feature engineering approach further, particularly when applying 790

these insights to actual devices. 791

When the progression of this research is visualised, a strong argument can be made 792

for an end-to-end system that could process data without difficulties and determine the 793

lengths of cryptographic keys, e.g., a system that would make this study’s significant 794

revelations accessible to anyone. It would be essential to test the framework on various 795

microcontrollers and fill the dataset with various cryptographic approaches to assure its 796

wide applicability and effectiveness. 797
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