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Abstract: The possession of smart devices has ingrained itself into daily life. Therefore, smart

devices, such as IoT and smartphones, are crucial sources of evidence in instances where criminal

activity occurs. Due to the challenges in traditional digital forensic techniques involving smart

devices, it has been recently proposed in the literature to leverage electromagnetic side-channel

analysis (EM-SCA) for the purpose. This paper identifies and discusses an important barrier that

exists in the application of EM-SCA for digital forensics that hinders its successful use, namely,

the issue of cross-device portability of machine learning (ML) models that are used for EM-SCA.

Firstly, the paper empirically evaluates the possibility of using trained ML models to extract

forensic insights from EM radiation data of IoT devices. During this empirical study, the inability

to reuse a trained ML model across different devices is identified. Secondly, the paper surveys the

literature in search of related work that has studied the use of EM-SCA to gather information from

smart devices. The purpose of the survey is to identify whether any existing work has been able to

introduce potential approaches to enable cross-device portability of ML models in EM-SCA. The

findings of this survey point to the fact that the identified problem still exists and requires further

studies opening the door to future research.
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1 Introduction

Digital forensics is a branch of investigation science incorporated with detection, extrac-
tion, and analysis of evidence from digital media to help progress investigations [Soltani
and Seyed 2017]. In other words, digital forensics is the analysis of digital evidence
acquired from electronic devices, such as personal computers, laptops, hand-held devices,
and IoT devices, that are seized from crime scenes to be investigated by law enforcement.
Digital evidence is mostly intangible and stored in digital formats including document
files, audio files, video files, andmanymore, which are extracted from digital devices [Du
et al. 2017]. Typical principles of digital forensic investigation rely on reconnaissance,
reliability, and relevance. Various law enforcement agencies participate in this inves-
tigative process. Whenever a digital device is confiscated by these authorities and is
deemed potentially pertinent to the investigation as digital evidence, it is subsequently
transferred to a digital forensic laboratory for the purpose of conducting digital forensic
analysis [Ieong 2006].

The existing digital forensic methods are mainly developed for traditional computing
devices, such as desktop and laptop computers, and focus on collecting and analysing
digital evidence from volatile and non-volatilememory [Khan et al. 2007]. The traditional
digital forensic technique comprises seizing the devices, acquiring forensic images, and
generating reports based on the acquired image to be produced before the court [Du
et al. 2017, Mushtaque et al. 2015]. Digital forensic experts usually follow three main
steps: acquisition, analysis, and presentation by using commercially available tools,
such as EnCase, PyFlag, and SMART, and also by using freely available tools, such as
SleuthKit [Soltani and Seyed 2017, Rughani 2017, Sayakkara et al. 2018]. Meanwhile,
mobile devices are handled by specialised tools due to the product-specific hardware
and software they contain.

The emerging trend and the necessity of smart devices are playing an important role
in human life in efficiently performing day-to-day work. The usage of smart devices by
all categories of people has increased dramatically in recent years in different ways, such
as smartwatches, surveillance cameras, smart homes, wearable devices, connected cars,
smart cities, and many more [Myridakis et al. 2020, Gomathi et al. 2018]. Especially
during the COVID-19 pandemic situation, the demand for these electronic devices
has increased rapidly as an alternative to carrying out essential work. Also, security
and privacy features have been tightly maintained among various vendors due to the
challenges in the market for commercial competence [Bojor 2017].

Meantime, smart devices are used as a weapon for criminal activities by malicious
individuals and organizations. Current technology advancement facilitates criminals
to commit new ways of criminal activities; not only cyberattacks, smuggling of drugs,
explosives and weapons, human trafficking, child exploitation, terrorist financing, and
money laundering, but also many varieties of serious activities that cause threats to human
lives [Conrod 2019]. Although the advancement of technology has simplified day-to-day
tasks, the pattern of human behaviour can be easily detected by having activity records
in smart devices. Smart home systems enhance human life by using sensors, including
cameras, microphones, motion detectors, and activity loggers. They play multiple roles
at home as a guard, servant, entertainer, cook, and many more [Abrishamchi et al. 2017].
Smart home systems contain the pattern of the owners’ routine work, while wearable de-
vices can be able to measure the health and physical behaviour of individuals [Sayakkara
et al. 2019a]. Similarly, smart cars have evidence for driver behavior and the ability to
cause accidents by taking control of the vehicular network [Kalutarage et al. 2019].

Smart devices can be used as an evidence source in forensic investigations through
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multiple approaches, such as by using computer forensics, mobile forensics, network
forensics, etc. [Sayakkara et al. 2019a]. Unlike desktop and laptop computers, smart-
phones and IoT equipment are small in size and hard to handle during investigations due
to the nature of their firmware setup and the use of cryptography. Most smart devices
do not store data on board due to the limited availability of storage. Usually, activity
records of IoT devices are often kept up in the associated smartphone or cloud drive.
Moreover, data retrieval from non-volatile storage is hard due to the hardware diversity
of smart devices.

During the investigation process, most of the IoT devices are captured in the power-
on state at the scene of an incident or crime. This is because switching off the device and
moving it to the forensic laboratory can destroy live forensic evidence of the devices.
Nowadays, much memory-based malware targeting iOS devices is used as evidence
at a crime scene. For instance, iOS devices are recommended to shut down and restart
frequently to avoid malware attacks on memory [Umawing, 2022, Sushko, 2022]. Once
the captured device has been turned off, the investigator is unable to trace the malware
on the device. Therefore, the live investigation mode is more suitable to investigate such
devices. Currently, digital forensic experts tend to tamper with smart devices due to
invasive techniques during the examination of such devices [Sayakkara et al. 2019b].

In recent years, many researchers and digital forensic experts have attempted to launch
different digital forensic investigation frameworks and techniques to investigate highly
protected smart devices [Sayakkara 2020, Shalaginov et al. 2020, Lutui 2015]. This is
because the high volume and velocity of data and the activities of smart devices make
digital forensic investigation challenging [Sjöstrand 2020, Conti et al. 2018, Lillis et al.
2016]. Additionally, the jurisdictional issues and legal regulations currently available
are not consistent with the aspects and structure of smart devices [Shalaginov et al.
2020, Maras 2015]. The revision of legal procedures is expected to prohibit threats
against smart devices and to secure the users of IoT peripherals [Barbry 2012]. Not only
that, due to the complex nature of newly arriving devices and their software updates,
rapid changes in the operating system, massive variance in storage patterns, remote
access and storage platforms, and the prevalence of security mechanisms have increased
the legal challenges for forensic investigators in acquiring forensic evidence from smart
devices [Garfinkel 2010].

Electromagnetic side-channel analysis (EM-SCA) holds significant promise for ad-
vancing investigations that are hampered by data encryption. The EM-SCA methods
rely on the Electromagnetic (EM) radiation emitted by the electronic circuits of digi-
tal devices. EM waves can be unintentionally generated by electronic systems during
internal operations of digital devices. EM-SCA is a part of the information security
domain that eavesdrops on the information from leakage EM radiation emitted by any
processing unit. EM-SCA is used for various purposes, such as retrieving cryptography
keys, detecting malware, detecting malicious modifications to software, data extraction,
software behavior identification, and many more. EM-SCA is non-invasive and does not
require any physical modification of the computing device being targeted [Sayakkara
et al. 2020, Das and Sen 2020]. Therefore, recently, EM-SCA methods have been pro-
posed to overcome ethical and legal issues in smart devices by analyzing the pattern of
activities within the device [Sayakkara 2020]. The EM-SCA methods open up a window
for forensic investigators to move in the correct direction to find the critical nodes behind
the crime scene towards a solution in the investigation process [Sayakkara and Le-Khac
2021a, Sayakkara and Le-Khac 2021b].

Machine Learning (ML) is crucial in EM-SCA as it enables the recognition of
patterns in EM emissions from secure electronic devices. Specifically, in scenarios such
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as analyzing EM radiation during cryptographic operations, ML algorithms (e.g., neural
networks or support vector machines) are trained on datasets representing different
cryptographic algorithms or key lengths [Mukhtar et al. 2023]. For example, a study
might focus on analyzing emissions during RSA encryption on a smart card [Messerges
et al. 2002]. ML models trained on diverse RSA key lengths can identify unique EM
radiation patterns associated with each key length. These models can then predict key
lengths in real-time, aiding in security evaluations by detecting potential vulnerabilities
related to key length disclosure through EM-SCA [He et al. 2021].

Various other methods are employed in EM-SCA to identify patterns in EM emission.
Statistical techniques such as correlation analysis and Power Spectral Density (PSD)
estimation are valuable, particularly when specific patterns are well-defined [Valentim
et al. 2021]. Frequency domain analysis, achieved through methods such as Fast Fourier
Transform (FFT), reveals underlying processes by analyzing frequency components,
aiding in identifying cryptographic operations [He et al. 2017]. Template-based analysis
involves comparing observed side-channel signals with pre-defined templates to identify
specific operations of known attacks [Hettwer et al. 2020]. ML provides adaptive pattern
recognition, while statistical methods, frequency domain analysis, and template-based
approaches offer viable alternatives depending on complexity, availability of data, and
desired accuracy levels in EM-SCA analysis.

The ability to use an EM-SCA machine learning model trained on EM data of one
type of device on another type of device is called cross-device portability of EM-SCA.
To be specific, it is necessary to ensure that EM-SCA methods are cross-device portable
in order to make them effectively usable in digital forensics.

This research aims to explore the possibility of generalising EM-SCA methods for
acquiring digital forensic insights from IoT and smart devices. ML models in EM-SCA
have demonstrated their effectiveness in analyzing digital forensic insights, particularly
in criminal cases involving IoT devices and smartphones. Therefore, enabling its effec-
tive use can provide a multitude of benefits such as, being able to conduct investigations
on smart devices without making any alterations to the devices. EM-SCA techniques
have undergone application on diverse set of devices, such as smartphones, IoT devices,
Arduino, and Raspberry Pi. Consequently, there is a critical need to expand and enhance
such EM-SCA models to encompass a broader range of processors, devices, and do-
mains. Achieving cross-device portability across various devices and domains, even with
different types of processors, holds the potential to significantly broaden the application
of EM-SCA in the field of digital forensics.

In this work, the problem of cross-device portability is studied from both the empirical
and literature perspectives. Initially, a preliminary experimental study was conducted
to demonstrate the presence of the problem in current EM-SCA approaches. Later, a
detailed review of the literature is performed, with the goal of identifying some intriguing
study areas and their future potential. Unlike traditional digital forensic methods, cross-
device portability of the EM-SCA methods is the prompt way to identify the evidence
by forensic insights to direct the investigator toward the answers. This paper makes the
following contributions:

– Empirically demonstrates the existence of the cross-device portability issue for ML
models trained to identify internal software behaviour of smart devices.

– A comprehensive literature review of the current state of smart devices and their
security features that challenge the cross-device portability of EM-SCA.
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– Identify the factors and potential approaches that can be exploited in the future to
build robust cross-device portable EM-SCA for smart device forensics.

In the future, EM-SCA methods hold promise for identifying perpetrators, given
the widespread use of IoT devices and smartphones. This research unveils a possibility
for investigators with flexibility across various devices, merging digital forensics and
side-channel analysis through ML elements. In real-world criminal cases, this approach
offers substantial support, potentially enabling the submission of digital forensic insights
to the court or providing investigators with valuable leads toward case resolution.

The rest of this paper is organized as follows: Section 2 begins with an explanation
of the key concepts of digital forensics and its conventional approach. In the subsequent
parts, the current state of smart devices and security measures are explained. Section 2.4
presents an overview of side-channel attacks with an emphasis on where electromagnetic
side-channel analysis is performed in-depth and a review of the EM-SCA approach
in the context of a digital forensics investigation. Section 3 addresses the need for
cross-device portability of EM-SCA approaches for digital forensics investigations in
the contemporary period by analysing the current and recently obtained datasets. An
experimental demonstration was also conducted to verify the problem brought on by the
cross-device portability of the EM-SCA model in real devices. Section 4 leverages the
cross-device portability of EM-SCA models to assess potential solutions to the ongoing
security and forensic challenges they provide. Section 4.2 describes the future direction
of the domain. Finally, followed by Section 5 concludes the paper.

2 Background

2.1 Digital Forensics

Digital forensics is the scientific study of evidence obtained from digital devices to under-
stand and recreate the sequence of events related to that evidence. It involves collecting
and extracting relevant information from digital devices after an incident, analyzing the
data to support a case, and presenting factual findings [Sindhu andMeshram 2012, Ragha-
van 2013]. Cybersecurity, which focuses on safeguarding personal information, relies
on digital forensics to investigate incidents [Von and Van 2013]. Various sources, such
as computer hard disks, network logs, mobile phone storage, and more, are examined in
forensic investigations [Khan et al. 2007]. Further, IoT and smart devices play a crucial
role in digital forensics as they unintentionally record activities that can serve as valuable
evidence. Analyzing digital media’s forensic insights is vital within the confines of legal
proceedings, and traditional investigation methods involve static analysis using dedicated
tools [Rafique and Khan 2013]. However, accessing and uncovering evidence from IoT
devices can be challenging due to their high-security measures and limited interaction
protocols [Choi et al. 2018, Da Xu et al. 2021].

2.1.1 Traditional Digital Forensics Investigation Approach

Traditional digital forensic techniques usually focus on locating suspect digital devices
at a crime scene. The next step is to extract the supporting evidence sources from such
devices. The materials and evidence sources are then handed over to a digital forensic
laboratory to perform the investigation with dedicated tools in order to unravel the riddle
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Figure 1: The step-by-step process model of traditional digital forensics approach.

involving the crime scene. Finally, the relevant evidence is extracted and included in a
report to produce before a court.

Traditional investigation approaches comprise of different types of models [Du
et al. 2017], but they primarily encompass the crucial components of the investigation
procedure as indicated in Figure 1. Law enforcement authorities arrive at the scene of the
crime, analyze the situation of the crime scene, and capture digital devices that may be
used as a tool, a target, or a witness [Li et al. 2019]. Investigators gather digital devices,
make a copy of the data storage of the captured device, and preserve it to prevent abuse
and tampering, before submitting it to the court without any alterations. After the devices
are handed over to digital forensic professionals, they examine and analyze the data
using specialized tools. For example, Encase and FTK Imager can be used to collect
evidence from the hard disk and physical memory, if necessary. PyFlag and the Sleuth
Kit (TSK) can also be used to extract information from forensic images [Soltani and
Seyed 2017]. The digital forensics experts generate a document based on the analysis to
be presented to the court.

2.2 Current Status of Smart Devices

Nowadays, the growth of smart devices, such as smartwatches, smart TVs, CCTV
cameras, medical implants, fitness wearables, etc., has made them involved in the day-to-
day lives of humans and take part in every activity. Smart appliances are increasingly used
around the world for multiple purposes, and statistically, it has been shown that an average
person would use around 4 IoT devices for different purposes by 2025 [Conti et al. 2018].
A statistical analysis of the growth of IoT devices up to 2025 as shown in Figure 2,
illustrates the exponential expansion of IoT devices over a period of ten years [Gupta
2021, Cvitić et al. 2021]. It makes sense given that a person could have several IoT
devices for various reasons within a short period of time. Smart systems provide a variety
of services with a wide range of smart devices to make human life easier. This ensures
comfort, security, safety, energy efficiency, and convenience [Vinoth Kumar et al. 2022].
Figure 3 illustrates how IoT and smart devices are increasingly being used in everyday
life to help people complete chores at home, at work, while traveling, and in public areas
to meet their needs [Gupta 2021, Cvitić et al. 2021].

Additionally, numerous scholars have studied the value of smart devices for both
present and future human requirements. Philip et al. analyzed various sensors and IoT-
based applications on in-home health care monitoring services, that help to assist senior
citizens and disabled people to monitor and care for their treatments and health con-
ditions [Philip et al. 2021]. Even smart cities have already been protected with highly
equipped IoT devices, Papadakis et al. have proposed the tracking of stolen objects by IoT
sensors [Papadakis et al. 2021]. Preventing road accidents by detecting driver fatigue us-
ing cloud and mobile applications has been explored by Abbas and Alsheddy [Abbas and
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Figure 2: Expansion of IoT devices that has been in operation for ten years globally
(adopted from [Gupta 2021, Cvitić et al. 2021])

Alsheddy]. It is evident that the growth of smart devices in all categories has dramatically
increased all around the world.

2.3 Security and Forensics of Smart Devices

Smart devices are limited in storage capacity and computational power. Most smart
devices have built-in security features and cryptography techniques to encrypt user data
to safeguard against unauthorized access. Despite advances in smart device technology,
malicious attackers continue to target the majority of smart devices in order to steal money
and data for a variety of objectives [Conti et al. 2018, Watson and Dehghantanha 2016,
Kolias et al. 2017]. The manufacturers of smart devices have an important role to play
in protecting smart devices from attackers. As a result, several researchers have come up
with alternative ways to defend devices against security risks. Choi et al. have maintained
security monitoring systems for IoT devices to mitigate security threats [Choi et al. 2018].
Da Xu et al. have proven the integration of embedded blockchain technology with IoT
devices to overcome security and privacy threats when handling real-time data processing
and transactions over heterogeneous smart devices [Da Xu et al. 2021]. Cryptography
techniques are used in smart home security to secure data and privacy since the context
of the data can reveal the locations, identities, and activities of individuals [Abrishamchi
et al. 2017].

IoT forensics is very challenging for investigators when collecting proper evidence
from IoT devices. Identification of evidence, collection, and preservation is hard because
smart devices do not contain easy-to-access storage. The diversity of the IoT environment
and the use of temporary data storage gives less support in evidence analysis. Moreover,
in the absence of a proper authentication system, identifying the activities and liabilities
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Figure 3: An annual rate of the number of IoT devices across various industries and
applications (adopted from [Gupta 2021, Cvitić et al. 2021])

of different parties having access to an IoT node would be challenging. Additionally,
numerous countermeasures are found to prevent unintentional leakage from internal
activities of smart devices [Lavaud et al. 2021]. Further, attribution of malicious activities
detected in an IoT environment even in the possession of evidence is quite challenging
in the absence of a reliable and secure architecture that guarantees a forensically-sound
logging and monitoring system [Conti et al. 2018].

2.4 Side-Channel Attacks

A side-channel attack (SCA) is considered a method to acquire information from a com-
puting system through any unintentional information-leaking channel [Buhan et al. 2022].
In general, side-channel attacks are considered a form of physical attack since they expose
information to the outside world through the use of physical parameters, such as power,
noise, or electromagnetic radiation. It is also considered a passive, non-invasive approach
because it employs indirect, under-equipped, and inexpensive techniques [Standaert
2010]. A side-channel attack focuses on extracting secret information from those physi-
cal parameters instead of directly capturing the information [Ahmid and Kazar].

Various side-channel attacks are covered in a wide range of studies. Farshteindiker et
al. reveal the possibility of capturing secret information from neighboring mobile phones
without their intention using gyroscopic sensors using sound exfiltration [Farshteindiker
et al. 2016]. Su and Zeng explored the security and privacy threats on information
provided by CPU cache-based side channel attacks [Su and Zeng. 2021]. Abrishamchi et
al. mainly focused on the possibilities of SCA on a smart home system to emphasize the
vulnerabilities to designers, engineers, developers, and researchers to find proper solutions
to overcome the attacks. Seven types of attacks on home systems are discussed in their
study through SCA at multiple layers [Abrishamchi et al. 2017]. Reverse engineering
has been performed on 16 distinct IoT devices by Shwartze et al. to demonstrate the state
of security of the devices and the availability of new forms of side-channel attacks to
gain access to the device owners’ personal information [Shwartz et al. 2018].
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Many researchers have developed countermeasures to side-channel attacks in order
to mitigate the consequences. For example, pre-silicon and post-silicon analysis can be
used to discover leaking channels using dedicated tools and simulators [Buhan et al.
2022]. Pre-silicon means that the leaking channel may be discovered without observ-
ing the devices using knowledge of the actual device, and post-silicon means that the
leaking channel can be detected and used for future purposes using the devices [Buhan
et al. 2022]. Additionally, countermeasures against side-channel attacks include zon-
ing, shielding equipment, shielding structure, soft TEMPEST, secured data bus, chip
re-design, and jamming [Lavaud et al. 2021]. Another method of preventing assaults on
a device is attestation, which ensures the integrity of a system. Meanwhile, the attestation
technique uses information from the power and electromagnetic side channel to prevent
attacks [Sehatbakhsh et al. 2019, Delgado-Lozano et al. 2021].

2.4.1 Electromagnetic Side-Channel Attacks/Analysis

Electromagnetic side-channels are defined as the unintentional leakage of electromagnetic
radiation from hardware components of electronic devices. The electromagnetic side-
channel methods rely on the electromagnetic (EM) radiation emitted by the electronic
circuits of digital devices. Electromagnetic radiation can be unintentionally generated
by electronic systems during their internal operations. The CPU, various types of ports,
memory chips, data and address bus lines, displays, keyboards, Ethernet, and cross-talk
are some of the sources that emanate EM signals [Lavaud et al. 2021]. Among them, the
CPU is a highly likely source of unintentional information leakage about the internal
operations and data handling of a computer. Similarly, the micro-controller unit (MCU)
in IoT devices emits unintentional EM radiation, but compared to the microprocessor
radiation, it is considerably weak [Sayakkara et al. 2018, Sayakkara 2020].

Electromagnetic Side-Channel Attacks (EM-SCA) are a part of the information
security domain that eavesdrop on the information from the leakage of EM radiation
emitted by computers. In other words, EM-SCA is the technique of capturing EM signals
from electronic devices without the owner’s knowledge in order to carry out malicious
attacks [Agrawal et al. 2002]. EM-SCA is used for various purposes, such as retrieving
cryptographic keys, detecting malware, detecting malicious modifications in software,
data extraction, software behaviour identification [Sayakkara et al. 2020], and device
fingerprinting [Ji et al. 2021]. EM-SCA is a non-invasive technique that does not require
any physical modification to the computing device being targeted. It can be performed
by commercially available, specialized hardware tools and the appropriate techniques,
such as simple electromagnetic analysis (SEMA), differential electromagnetic analysis
(DEMA), and correlation electromagnetic analysis (CEMA) [Das and Sen 2020].

Numerous studies have explored various applications of EM-SCA. Callan et al. have
presented a new strategy for detecting electromagnetic side-channel energy (ESE) from
different processor instructions. Their experiment shows a greater difference in the ESE
value between different designs of smart devices. Such similarities and differences are
useful for computer designers and program developers to identify which parts of hardware
and software are mostly engaged with side-channel vulnerabilities and which parts are
mostly exploitable for side-channel attacks. Similar types of computers have been shown
to have the same ESE frequency. Consequently, similar systems/families with the same
ESE value can open a path for digital forensics investigators to acquire the appropriate
EM traces and build models [Callan et al. 2015].

Gustov and Levina highlighted the various forms of unauthorized access when
using a mobile phone based on Global System for Mobile Communications (GSM)
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technology. The electromagnetic field of a mobile phone’s GSMmodule can be measured
in order to observe how the signal strength indicators change based on the operating
mode. FDMA, TDMA, and CDMA are the most popular three physical channels in
telecommunication networks. Information leakage can be verified by monitoring the
activity of the aforementioned logical channels compared to an idle situation. In order to
evaluate the status of the mobile phone, the electromagnetic field strength was measured
in idlemode using the multi-functional searching device “ST 031 P” with a low-frequency
magnetic field detector (ferrite antenna) with the frequency range: 0.3 - 10 kHz. Then,
measure the electromagnetic field changes during a voice call on the mobile phone.
Further, a low-frequency electromagnetic field is observed from various operational
modes inmobile phones. The collected signal strengthmeasurements indicate the variance
in the electromagnetic signal pattern. Therefore, electromagnetic radiation is used to
detect mobile phones’ different operations and decrypt and decode the data for further
analysis [Gustov and Levina 2021].

Sehatbakhsh et al. identified and exploited the EM-based vulnerability created by
power management units from new computer devices in order to develop a covert
channel and a key-logging framework. They showed how existing power management
units create different power states on the system, which are primarily used to enhance
energy efficiency. It can lead to a side-channel by leaking critical information about the
present state of the system. EM radiation has been captured during those different power
states of processors produced by the voltage regulator module of the system [Sehatbakhsh
et al. 2020].

The control flow monitoring of the programmable logic controllers (PLC) that are
specifically available in industries, power stations, and healthcare facilities is a crucial
monitoring application to prevent attacks. PLCs are the target of malicious cyberattacks
without the awareness of human operators. Therefore, EM-SCA has been used to discover
the anomalous executions on PLCs by contrasting the default and unusual operations
based on the distinctive pattern of EM traces for each instruction of the dedicated
programmes [Han et al. 2017, Han et al. 2019].

Additionally, numerous studies have demonstrated that EM side-channel attacks
provide a way to analyze devices with less physical access and examine potential issues,
such as unintentional electromagnetic emissions, electromagnetic emissions as a signa-
ture, and information leaking electromagnetic emissions. The applications of various
EM-SCA techniques pave the way for new avenues in digital forensics to investigate the
evidence from smart devices [Sayakkara et al. 2019a].

2.5 EM-SCA for Digital Forensics

Smart devices can be a vital source of evidence in an investigation. Smart devices,
unlike other traditional digital devices, do not facilitate forensic investigations due to
a lack of user interaction features, inadequate user interfaces, and the constant power-
on mechanism [Lillis et al. 2016, Zulkipli et al. 2017]. The traditional investigation
approach focuses mostly on classical digital devices such as desktops, laptops, digital
cameras, and many others. For smart devices, EM-SCA will be effective in analyzing a
smart device in a non-invasive manner at a crime scene.

EM-SCA is a potential solution for investigators to trace out digital forensic insights
from suspected smart devices without tampering with them. EM-SCA can perform
live inspections while the systems run various applications on IoT devices and smart-
phones [Sayakkara and Le-Khac 2021a]. Recently, EM-SCAwas proposed by Sayakkara
et al. to detect forensic insights as an alternative to the traditional digital forensic approach.
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The proposed EM-SCA approach is designed to obtain digital forensic insights for IoT
devices and smartphones. The information gathered through EM-SCA is probabilistic and
has not yet been considered as court-admissible evidence. Therefore, EM-SCA results
are referred to as forensic insights instead of forensic evidence. As a result, these insights
should only be used as a guide to assist an investigator in conducting an investigation and
obtaining court-admissible forensic evidence through other means [Sayakkara and Le-
Khac 2021a]. Figure 4 depicts the eventual completion of a case where EM-SCA plays a
role in directing the investigation in the right direction toward identifying evidence.

Plan Based Device
Identification Triage Examination Lab Analysis Forensic Analysis

Report 

Live Analysis

EM Trace Acquisition 
hidden layer output layer

Software Activity Detection 
EM Trace Pre-processing Cryptographic Key

Recovery Attacks 

EM Side-channel Analysis (EM-SCA)

Figure 4: EM-SCA digital forensics investigation model: the live analysis in addition to
the existing investigation model (adopted from [Sayakkara et al. 2019b])

A subset of EM-SCAmethods that make use of machine learning has shown to be able
to detect specific software behavioural patterns of target devices [Sayakkara 2020, Le
et al. 2021]. Furthermore, a framework called EMvidence incorporates such machine
learning-based EM-SCA to gather digital forensic insights by the same authors. The
models are trained using EM emission data from devices, such as Arduino and Raspberry
Pi [Sayakkara et al. 2020], and show that the EM-SCA is a promising way to acquire
digital forensic insights from IoT devices [Sayakkara et al. 2019b]. Later on, another
work by Sayakkara et al. studied different types of smartphones with various System-on-
Chips (SoCs) and analyzed their EM radiation patterns using deep learning techniques.
Multilayer perceptron (MLP) and convolutional neural networks (CNNs) are widely
employed in deep-learning-based SCA. Long short-term memory (LSTM), recurrent
neural networks (RNN), residual neural networks (ResNet), and generative adversarial
networks (GANs) are also used in a limited number of applications for deep learning
models [Picek et al. 2023]. The wide range of insights collected from smartphones and
IoT devices has opened the opportunity for digital forensic investigations [Sayakkara
and Le-Khac 2021a].

Multiple steps are involved in the EM-SCA method for digital forensics. The initial
focus is on defining and establishing the right environment, which comprises require-
ments, smart devices, and EM data-gathering equipment. After identifying the smart
devices available to the investigator, the investigator must check whether the devices
can be counted as devices for EM-SCA and have previous data recorded. Investigative
questions can be answered by detecting the current internal state of the smart devices
by comparing the previous records using EM-SCA. Then consider data collection and
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analysis in order to discover forensic insights [Sayakkara 2020]. EM-SCAwas developed
with multi-domain side channels and cutting-edge AI technology, supporting the forensic
investigation process as live analysis while the device is working [Sayakkara et al. 2018].

3 Cross-device Portability

3.1 The Need of Cross-device Portability in Digital Forensics

The concept of cross-device portability refers to the generalizability of models developed
for a variety of devices. In other words, a model that was developed for one device may
be adapted for another. Cross-device portability plays a crucial role in digital forensic
investigations, particularly when utilizing the EM-SCA approach. Cross-device porta-
bility allows digital forensic investigators to easily transport and utilize EM-SCA tools
across multiple devices and locations. This enables a seamless investigation workflow,
especially in scenarios where the evidence needs to be collected from different devices or
analyzed in different environments. In digital forensics, it is essential to analyze a wide
range of devices, including computers, smartphones, IoT devices, and other electronic
systems. The portability of devices ensures that EM-SCA tools and techniques can be
applied across various devices, regardless of their form factors, architectures, or operating
systems.

Different investigative situations could call for the use of particular equipment or
techniques. Cross-device portability enables digital forensic professionals, irrespective
of the devices involved, to adapt and customize their EM-SCA methodologies to suit the
particulars and needs of each case. Investigators can perform on-site analysis or real-time
monitoring of electromagnetic signals emitted by the equipment under examination using
portable EM-SCA tools. This initiative may speed up the criminal investigation, allowing
for a more timely and efficient analysis of digital evidence. The integrity of evidence is
protected by the capacity to move EM-SCA equipment and techniques between devices.
By employing consistent and standardized techniques, investigators can minimize the
possibility of harming or changing the evidence while conducting their investigations.

Cross-device portability facilitates scalability in digital forensics investigations,
allowing teams to handle multiple cases simultaneously or expand their analysis to
handle larger datasets. Furthermore, it supports collaboration among investigators by
enabling the sharing and synchronization of portable EM-SCA tools and findings across
different teammembers or forensic labs. The adaptability, effectiveness, and efficiency of
digital forensic investigations using the EM-SCA approach are all improved by portability
between devices. It helps investigators adapt to various conditions, maintain the integrity
of the evidence, and interact more successfully, ultimately helping to precisely and
quickly extract vital digital evidence.

3.2 Proposed Method

The workflow, depicted in Figure 5, outlines the process of acquiring forensic insights
and ensuring cross-device portability of ML models in EM-SCA. The experiment in-
volves the selection of IoT devices and smartphones, with their processors categorized
into different levels through structural analysis. This involves devices having identical
processor specifications (manufacturer, architecture, instruction set, and clock frequency).
Additionally, devices from the same family are included, differing in generations, se-
ries, and architectures. Furthermore, devices from diverse manufacturers are considered,
sharing common features such as architecture and instruction sets.
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Various Software Activities

Various Smart Devices
Capture EM Side-channel

EM-SCA Model

Process EM TracesTransfer Learning for 
Cross-device Portability 

Forensic Insight

Figure 5: The proposed flow of methodology for the cross-device portability of the
EM-SCA to identify the forensic insights from smart devices.

The procedure entails pinpointing the origin of EM radiation in a device. EM emis-
sions are captured using an h-loop near-field antenna connected to a HackRF One
Software-Defined Radio (SDR). The SDR is connected to a computer running GNURa-
dio software, with the target device’s clock frequency configured as the target frequency.
By moving the antenna over the device, EM radiation is captured and stored in the
computer.

In this process, the EM traces collected from devices undergo preprocessing steps
to refine the data. Subsequently, an ML model is created using this processed data to
enable EM-SCA for the chosen devices. To enhance the versatility of EM-SCA across
various devices, a larger volume of EM traces is gathered from different devices. These
additional traces are used to assess the model’s portability for cross-device applications.
This evaluation is achieved through the implementation of a transfer learning technique,
ensuring that the knowledge gained from one set of devices can be effectively applied to
analyze EM traces from diverse devices.

In contemporary legal cases, IoT devices and smartphones serve as crucial evidence.
EM-SCA, a non-intrusive technique, provides excellent results without damaging the
devices. By employing ML and Deep Learning (DL), precise models can be developed
for different software activities on a range of devices. The ability to apply EM-SCA
models across different devices accelerates forensic analysis, making investigations more
efficient.

3.3 Experiments on the Cross-device Portability

3.3.1 Selection of Smart Devices

In this section, some of the existing work on EM-SCA-based smart device forensic
insight acquisition will be reproduced first. Such reproduced results are later used to
investigate their cross-device portability issues. The EM trace files of eight different
real-world smart devices are included in an existing dataset, which is publicly accessible1.

1 http://aseados.ucd.ie/datasets/EMSCA

http://aseados. ucd.ie/datasets/EMSCA
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Specifically, four smartphones — iPhone 4S, Samsung Galaxy Grand Prime, Nokia
4.2, and Sony Xperia T — and four devices of the Internet of Things (IoT) devices —
Amazon Echo Dot, Amazon Echo Show 5, Google Home, and Samsung Smart Things —
were chosen based on their distinctive processor types. Table 1 illustrates the technical
specification of the devices. The large collection of EM trace files of each device is stored
in the file format, called Hierarchical data format 5 (HDF5). The HDF5 file contains
the dataset in two branches for Smartphones and IoT devices. Each branch has been
further separated into four branches, each of which represents a different category of
devices [Sayakkara and Le-Khac 2021b, Folk et al. 2011].

Device Type Device Name System-on-Chip Architecture

IoT Devices

Amazon Echo Show 5 MediaTek MT 8163 ARMv 8-A

Amazon Echo Dot(3rd Gen) Mediatek MT 8516 ARMv 8-A

Google Home Marvell 88DE3006 Ar-
mada 1500 Mini Plus

ARMv 7

Samsung SmartThings Hub (v2) MCIMX6L2DVN10AB ARMv 7-A

Smartphones

Apple iphone 4S Apple A5 ARMv 7-A

Sony Xperia T Qualcomm Snapdragon
MSM8260A

ARMv 7-A

Samsung Galaxy Grand Prime Qualcomm Snapdragon
MSM8916

ARMv 8A

Nokia 4.2 (v2) Qualcomm Snapdragon
SDM439

ARMv 8-A

Table 1: Technical specification of selected smart devices

3.3.2 Selection of Software Activities

Software activities are varied according to the selected devices which has been observed
while capturing the EM radiation. For instance, calendar app, camera photo, camera video,
email app, gallery app, home screen, idle device, phone app, SMS app, and web browser
are ten common software activities. The selected ten activities have been monitored
to capture EM radiation from each of the four smartphones although Samsung Galaxy
Grand Prime had audio recording activity instead of the calendar app. Among the IoT
devices, Amazon Echo Dot and Google Home have monitored nine different software
activities: asking a definition, asking for time, asking to play radio, controlling light
bulb, device idle, device muted, device resetting, just wakeup word, and powering on.
Amazon Echo Show 5 has observed again nine different activities: asking a definition,
asking for time, asking to play radio, controlling light bulb, device idle, device resetting,
just wakeup word, powering-off, and powering on. Finally, Samsung Smart Things has
observed eight different activities: controlling smart outlet, device idle, device powered
off, device powering on, opening the app, view arrival sensor, view door sensor, and
view motion sensor [Sayakkara and Le-Khac 2021b].

3.3.3 Acqusition of EM Side-Channels

Electronic components inside computing devices produce EM radiation over several time
periods. Both smartphones and IoT devices have a variety of internal parts, including
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RAM, bus lines, network adaptors, video and audio components, and many more. The
internal parts are constructed using System-on-Chip (SoC) devices, each of which has a
built-in system clock frequency and is capable of producing EM radiation. EM radiation
causes crucial information leakage during the operation of internal components. The
leaked information is the source to the attacker for their own benefit [Sayakkara and
Le-Khac 2021b].

Software Defined Radios (SDR) are used to capture and convert analogue EM sig-
nals into digital data and serve as an intermediary between hardware and software
tools [Sayakkara 2020, Jondral 2005]. SDR tools, such as HackRF One, have made
it much easier to capture electromagnetic radiation for analysing the patterns and be-
haviours of the software on IoT devices and smartphones [Sayakkara et al. 2018]. A
broad frequency range, from 1MHz to 6GHz, is accessible using the HackRF One SDR
to collect signals. Usually, this SDR device can record and transmit radio frequency,
Bluetooth, EM signals, GSM, WiFi, etc. This implies that most devices and smartphones
on the Internet of Things (IoT) have a system clock frequency that falls within the afore-
mentioned range. The HackRF One SDR can record sample rates, in particular, up to
20MHz. Additionally, GNU Radio libraries are integrated with the HackRF One SDR
software tools that offer graphical user interfaces known as GNU Radio companion,
which makes it easier to visualize EM radiation patterns graphically [Martoyo et al.
2018]. The proper system clock frequency of the target device has been tuned on the host
computer with the aid of the GNU Radio companion. The H-loop near-field antenna,
which is attached to the antenna port of the HackRF One SDR, has been able to read
the electromagnetic radiation of the various software behaviours. The H-loop near-field
antenna moves over the target device and gets closer to the SoC processor, as the SoC is
expected to leak crucial information about the internal workings of the device.

Once the electromagnetic (EM) signals are recorded in an analog form using an H-
loop antenna, they are promptly converted into a digital signal using an analog-to-digital
converter (ADC) in a software-defined radio (SDR). A specified number of samples for
each signal could be triggered depending on when programme behaviour is captured.
The Python language is used to adjust parameters in the GNU Radio Companion in
order to acquire EM data. The resulting EM trace files are saved as “.cfile” raw data for
subsequent processing on developing and evaluating models for cross-device portability
of EM-SCA in digital forensics investigation. The hardware setup for obtaining forensic
insights using the HackRF One SDR from a specialized smart device is depicted in
Figure 6.

3.3.4 Process EM Traces

Device-specific EM trace data needs to be transformed into an accessible format in
order to efficiently construct an EM-SCA model. The captured EM radiation appears as
continuous time-domain signals mixed with external noise, which is more evident in the
frequency domain. The accuracy of detecting information leakage by software behaviour
analysis in the time domain is limited. Therefore, converting the signal to the frequency
domain is crucial for effective data analysis. Short Time Fourier Transfer (STFT) aids in
generating feature vectors from time-domain to frequency-domain signals, facilitating
accurate analysis.

Each EM trace file, representing a time-domain signal, was processed using STFT to
create frequency-domain windows. Each window serves as a training instance, with the
corresponding IoT device/smartphone software activity as a label. Labels consist of 2048
features (window size) and 10,000 training samples. For example, the “Calendar App”
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Figure 6: The hardware setup for acquiring EM trace files from a smartphone utilising a
HackRF One SDR device that is attached with an h-loop near-field antenna.

label contains 2048 frequency features and 10,000 time samples. Similar datasets are
generated for various software activities, resulting in a dataset size of 100,000 samples
by 2048 features for ten software activities, representing the time-frequency dimension.
Figure 7 shows the PSD plot of the email activity over the four different smartphones
and it has proven the difference of EM radiation of the same activity over different types
of smartphones. Figure 8 shows the different forms of PSD plots while the four different
IoT devices are idle.

3.3.5 EM-SCA trace dataset

The HDF5-based EM-SCA dataset contains a total of 40 EM trace files from smartphones
and 35 EM trace files from IoT devices. Each trace file has been recorded for a duration of
a few seconds (less than a minute), which means the variance of the amplitude of the EM
signal has been captured over time and the capturing sample rate has been set to 20MHz
using a software-defined radio (SDR) device, called HackRF One. The EM-SCA dataset
was originally approximately 53 GB in size but was compressed to about 12 GB in order
for researchers to share, store, and process it on fairly accessible machines [Sayakkara
and Le-Khac 2021b].

3.3.6 Developing EM-SCA Model per Device

The study employs MLPmodels on eight devices, pre-processing EM trace files to extract
features. On this regard, STFT operation with a window size of 2048 samples and a 12%
overlapping ratio is used. This creates a two-dimensional dataset with frequency and time
dimensions, generating 2048 features for each of the 10,000-time samples, representing
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Figure 7: PSD plots of the email activity from four different smartphones

different software activities as labels. Each label constitutes a class for classification,
ensuring a balanced dataset of 10,000 records per class. A min_max scalar is applied for
dataset preprocessing.

The MLP model consists of an input layer with 2048 nodes representing features,
five hidden layers with ReLU activation, and an output layer using Softmax activation
for software activities. Table 2 displays the structure of the MLP model for a specific
smartphone. Training involves 90% of the dataset, with the remaining 10% for testing. A
Stochastic Gradient Descent (SGD) optimizer with a learning rate of 0.001 and sparse cat-
egorical cross-entropy for compilation are used. Performance is assessed using measures
such as recall, accuracy, precision, and F1 score obtained from the confusion matrix.

3.3.7 Results and Comparison

All eight devices undergo training using the same MLP model and parameter settings,
except for the output layer, which is configured based on the number of classes in
the dataset. Specifically emphasizing the outcomes for the iPhone 4S and Samsung
SmartThing — representing the smartphone and IoT device categories — the obtained
outcomes are displayed in the following figures and tables: The Table 3 provides accuracy
and loss values for both devices across training and validation datasets, covering epochs
from 5 to 50. When comparing the results across epochs, it is more prominent to assess
the outcomes specifically for 20 epochs by considering both the accuracy value and



Navanesan L., Le-Khac N.-A., Oran Y., Zoysa K.D., Sayakkara A.P.: Cross-device ... 1407

Figure 8: PSD plots of the device idle from four different IoT Devices

Layer Type Output Shape No. of Parameters

Dense (ReLU) 1400 2,868,600

Dense (ReLU) 800 1,120,800

Dense (ReLU) 500 400,500

Dense (ReLU) 200 100,200

Dense (ReLU) 100 20,100

Dense (Softmax) 10 1,010

Total Parameters 4,511,210

Table 2: Architecture of the MLP classifier of a specific smartphone

training time. Further, Figures 9 and 10 visually depict the accuracy and loss values
achieved during the training of the iPhone 4S and Samsung SmartThing models over a
period of 20 epochs. The Figures 11 and 12 depict confusion matrices, depicting results
for the iPhone 4S in the smartphone category and Samsung SmartThing in the IoT
device category. Additional details regarding the performance of the models on these
devices are presented in Tables 4 and 5. These tables delineate the performance metrics
of the deep learning model for the iPhone 4S and Samsung SmartThing, as outlined in
Section 3.3.6. Additionally, Figures 13 and 14 illustrate the performance of the ROC
curve concerning the accuracy of each individual class for the respective devices. These
figures also showcase the micro-average accuracy, providing a comprehensive view



1408 Navanesan L., Le-Khac N.-A., Oran Y., Zoysa K.D., Sayakkara A.P.: Cross-device ...

of the overall performance across all classes. Furthermore, a 10-fold cross-validation
was conducted for all the devices; the results of the cross-validation for iPhone 4S and
Samsung SmartThing devices are presented in Table 6.

Epochs

iPhone 4S Samsung SmartThing

Training Validation Training Validation

Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss

05 0.9462 0.3729 0.9827 0.3176 0.9359 0.6888 0.9408 0.4919

10 0.9902 0.1294 0.9916 0.1129 0.9971 0.0347 0.9969 0.0314

15 0.9921 0.0779 0.9924 0.0696 0.9983 0.0144 0.9978 0.0149

20 0.9944 0.0503 0.9942 0.0463 0.9992 0.0095 0.9989 0.0086

25 0.9941 0.0445 0.9946 0.0390 0.9997 0.0065 0.9992 0.0062

30 0.9951 0.0372 0.9956 0.0352 0.9996 0.0046 0.9990 0.0059

35 0.9955 0.0271 0.9962 0.0240 0.9996 0.0052 0.9992 0.0050

40 0.9952 0.0292 0.9952 0.0270 0.9997 0.0041 0.9985 0.0054

45 0.9954 0.0255 0.9960 0.0241 0.9998 0.0035 0.9989 0.0054

50 0.9955 0.0301 0.9956 0.0286 0.9995 0.0055 0.9993 0.0052

Table 3: Accuracy and loss values for each epoch on the training and validation

datasets of the iPhone 4S and Samsung SmartThing..

Class Precision Recall F1-score Support

calendar-app (0) 1.00 0.99 1.00 1011

camera-photo (1) 1.00 1.00 1.00 1010

camera-video (2) 1.00 0.99 1.00 993

email-app (3) 0.98 0.98 0.98 939

gallary-app (4) 1.00 1.00 1.00 1043

home-screen (5) 1.00 0.98 0.99 1027

idle (6) 0.99 0.99 0.99 999

phone-app (7) 1.00 1.00 1.00 974

sms-app (8) 0.99 0.99 0.99 1003

web-browser-app (9) 0.98 1.00 0.99 1001

Macro Avg 0.99 0.99 0.99 10000

Weighted Avg 0.99 0.99 0.99 10000

Accuracy 0.99 10000

Table 4: The classification report of the iPhone 4S, assessing 10 software behaviours

through a chosen deep learning model.

The comparison and significant difference in accuracy between the reproduced results
and the original results [Sayakkara and Le-Khac 2021b] is shown in Table 7. All the
accuracies are measured at 20 epochs. Smartphone accuracy has performed marginally
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Figure 9: Accuracy and loss across the trained model for iPhone 4S.

Figure 10: Accuracy and loss across the trained model for Samsung SmartThing.
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Figure 11: The confusion matrix of iPhone
4S.

Figure 12: The confusion matrix of
Samsung SmartThing.

Class Precision Recall F1-score Support

controlling-smart-outlet (0) 1.00 1.00 1.00 927

device-idle (1) 1.00 1.00 1.00 999

device-powered-off (2) 1.00 1.00 1.00 979

device-powering-on (3) 1.00 1.00 1.00 976

openning-the-app (4) 1.00 1.00 1.00 1080

view-arrival-sensor (5) 1.00 1.00 1.00 1016

view-door-sensor (6) 1.00 1.00 1.00 1015

view-motion-sensor (7) 1.00 1.00 1.00 1008

Macro Avg 1.00 1.00 1.00 8000

Weighted Avg 1.00 1.00 1.00 8000

Accuracy 1.00 8000

Table 5: The classification report of the Samsung SamrtThing, assessing 8 software

behaviours through a chosen deep learning model.

better in reproduced results than in the original, while IoT device accuracy has performed
marginally better in the reproduced results than in original results. Here, the reproduced
result for the Amazon Echo Dot, Amazon Echo Show 5, and Google Home has used
fewer classes than the prior results. Since the replicated results barely differ from the
original results, this demonstrates a better level of software behaviour prediction inside
of smart devices and provides a potential lead for non-invasive digital forensics on smart
devices. Additionally, the results compel further testing of additional devices in order to
determine which data is transferable between devices with similar processor types. The
portability of the device makes the digital forensics approach more effective.



Navanesan L., Le-Khac N.-A., Oran Y., Zoysa K.D., Sayakkara A.P.: Cross-device ... 1411

Figure 13: The ROC curve for the iPhone
4S represents the macro-average accuracy
and encompassing the individual accuracy

for each of the ten classes.

Figure 14: The ROC curve for the Samsung
SmartThing represents the macro-average
accuracy and encompassing the individual
accuracy for each of the eight classes.

Fold
Accuracy

iPhone 4S Samsung SmartThing

1 0.8983 0.9968

2 0.8928 0.9985

3 0.8997 0.9994

4 0.8958 0.9999

5 0.8959 0.9999

6 0.8972 0.9994

7 0.8998 0.9998

8 0.9002 0.9998

9 0.8995 0.9996

10 0.9029 0.9998

Table 6: Accuracy scores obtained during the 10-fold cross-validation of iPhone 4S and
Samsung SmartThing.

3.3.8 Validating Cross-device Portability of EM-SCA

The EM-SCA process model is tightly associated with a specific device type, which
means that an EM-SCA model is unable to support forensic investigation of two types
of devices found in a criminal scene: the first is the latest smart device, and the second
is a device that has not yet been counted for EM-SCA analysis. The applicability of
the EM-SCA process model has not been established for heterogeneous smart devices
with similar and different processors. As a result, this study proposes a mechanism
for validating homogeneity across many devices with comparable or different types of
processors, a concept known as cross-device portability.

In order to validate the cross-device portability of various devices, three identical
iPhone 13 devices were chosen to collect the EM traces while the smartphones were
in idle mode and observe the pattern of the EM signals by plotting the first three PCA
coefficients of these signals on a grid, as shown in Figure 15. Unfortunately, the patterns
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Device Name Reproduced Accuracy Existing Accuracy

Amazon Echo Dot (3rd Gen) 0.9945 0.9968

Amazon Echo Show 5 0.9963 0.9966

Google Home 0.9958 0.9976

Samsung Smart Things 0.9989 0.9996

iPhone 4S 0.9944 0.9816

Sony Xperia T 0.9982 0.9962

Samsung Galaxy Grand Prime 0.9965 0.9963

Nokia 4.2 (v2) 0.9972 0.9932

Table 7: Comparison of reproduced accuracy with original accuracy for each of the
eight smart devices from the existing dataset

significantly varied from one another when three devices were examined in idle mode.
Further, the collected idle EM samples from each of the three devices were applied with
the MLP model to train the idle mode; however, as can be seen in the confusion matrix in
Figure 16, the machine learning model clearly extracts three different idle states among
identical devices. This result raises questions about the cross-device portability of the
devices, and it also highlights how crucial it is to be able to transfer models when using
the EM-SCA approach in the context of digital forensics. Therefore, in order to employ
the EM-SCA approach in forensic investigations involving smart devices, an in-depth
analysis of cross-device portability among heterogeneous and homogeneous devices is
absolutely necessary.

Figure 15: The outcome of PCA analysis of
EM radiation from three identical iPhone

13 devices in idle mode.
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Figure 16: The confusion matrix to
distinguish between three iPhone 13

devices in idle mode using an EM-SCA ML
model.



Navanesan L., Le-Khac N.-A., Oran Y., Zoysa K.D., Sayakkara A.P.: Cross-device ... 1413

3.4 Existing Work of Cross-device Portability

Cross-device portability is necessary to efficiently generalize and simplify EM-SCA
activities. Cross-based applications, such as cross-device, cross-model among machine
learning models, cross-domain among side-channel analysis, cross-knowledge, cross-
family among computing devices, etc., are now frequently employed to improve perfor-
mance across several domains. Moreover, numerous researchers developed innovative
ways to use hybrid techniques or generalize individual methods. The same SoC or CPU
cores are used in a variety of smart devices. It, therefore, asserts that the prospective use
of cross-device EM-SCA models will lay the foundation for effective digital forensics
investigations, particularly for smart devices.

Numerous scholars have examined cross-device implementations for various objec-
tives in many domains. For instance, cross-device configurations have been examined
for their ability to carry out attacks by first creating a model on a testing device, and
then employing that model on a target device. Additionally, it has been discovered that
the variation of unrelated signal patterns from the circuit noise of different devices does
not impact the outcome [Han et al. 2022]. Zhang et al. performed cross-device power
analysis using deep learning for multiple scenarios involving devices: a specific device,
duplicates of the same device (identical), different models and structures of devices
produced by the same manufacturer (homogeneous), and devices made by different
manufacturers (heterogeneous) [Zhang et al. 2020].

Thapar et al. have investigated the power side-channel analysis between dummy
devices and target devices utilizing deep learning technologies in order to quickly and
successfully attack the target device. The entire dataset is trained to generate the base
model, which is then fine-tuned by decreasing the learning dataset for the attack. Here,
cross-device knowledge sharing has happened to capture the secret keys of the target
devices [Thapar et al. 2020]. The recovery of secret keys from target devices has been
tested based on the deep learning technique by applying cross-knowledge utilization for
power side-channel attacks from the dummy devices to the target devices [Thapar et al.
2020].

Yu et al. have proposed deep learning-based cross-device and cross-domain transfer
learning techniques to extract the secret key from the target devices by using power
and electromagnetic side-channel attacks. These methods proved that transfer learning
is a very suitable approach that works between the various architectures of devices
for side-channel attacks [Yu et al. 2021]. Moreover, cross-device attacks have been
tested based on both power and EM SCA techniques using transfer learning [Yu et al.
2021]. Transfer learning frameworks reduce training and learning times for deep learning
models with effective results [Fang et al. 2022]. A classification of related work on
cross-device-based applications encompassing different side-channel attacks, different
deep learning-based profiling models, and related fields is given in Table 8.

Despite multiple existing research, it is still unclear whether a machine learning
model trained to detect the software behaviour of a particular type of device would work
across all the devices of that type. The ability to use an EM-SCA machine learning
model trained on EM data of one device type on another device type can be called cross-
device portability of EM-SCA. To be specific, it is necessary to ensure the cross-device
portability of EM-SCA in order to make it effectively used in forensics. That means the
built machine learning models to detect software behaviour on one type of smart device
can potentially be used on other types of smart devices that use the same or different
type of SoC.

Cross-device portability among smart devices ensures the successful implementation
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and deployment of side-channel analysis and machine-learning models among multiple
devices. A model designed for a particular device can be adopted by another device that
is the same and/or different categories. A machine learning model adopted by another
device or another task is called transfer learning. Basically, transfer learning rises from
the deep learning models and knowledge acquired from a trained model to be utilized
by another similar task [Han et al. 2021]. In order to carry out attacks against devices,
a number of neural network strategies have been investigated on the transferability of
machine learning models [Han et al. 2022].

Moreover, the transfer learning approach has been successfully needed by analyzing
different biomedical signals e.g., EEG and EMG for MLP and CNN classifiers by Jordan
et al. They have proved the higher accuracy of the models while applying transfer learning
rather than the traditional classification models [Bird et al. 2020]. Additionally, Cao et al.
developed an adversarial learning-based profiling attack that leveraged transfer learning
techniques on deep learning models. This was after discovering portability issues while
using cross-device profiled attacks [Cao et al. 2022].

4 Discussion & Future Directions

4.1 Prevailing Smart Device Forensic Challenges

Many contemporary forensic investigations involving smart devices can be aided through
cross-device portable EM-SCA techniques. In this subsection, two such scenarios are
considered to illustrate the impact of the field of cross-device portability in EM-SCA.

4.1.1 Analysing Damaged Smartphones

Most of the modern-day criminal investigations involve smartphones in one way or
another. Digital forensics on mobile devices is known as mobile forensics. There exists
a wide variety of mobile forensics techniques and tools, including flasher tools, chip-off
techniques, MOBILedit, MSAB, Belkasoft, Cellebrite UFED, and Manifest Explorer.
Various mobile forensics models employ those tools [Dasgupta 2021, Al-Dhaqm et al.
2020]. There are numerous manufacturers and mobile device types available on the
market; therefore, there is a significant difference between different makes and models.
Due to this reason, it is difficult for an investigator to choose the right forensics tools or
techniques for extracting internal data from mobile devices. Furthermore, the situation
gets worse when the device under investigation is considered to have damaged [Dasgupta
2021].

Problem: The existing mobile forensics methods must follow an invasive approach
to conduct an investigation when a device is damaged and it is not possible to extract
data through its standard communication ports, such as USB.

Solution:The forensics team can use the EM-SCAmethod in this case non-intrusively
to gather forensic insights from the device. When a particular device is damaged, —
blocking the use of traditional mobile forensics techniques — EM-SCA is still applicable.
EM-SCA offers a potential solution for damaged smartphones by detecting alterations
in EM emission due to physical damages such as cracked screens, faults in electronic
components, software alterations, or tampering attempts. EM-SCA analyzes unique
EM patterns associated with internal operations, enabling the identification of specific
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affected areas. It can also analyze behavioral patterns and detect tampering attempts
through variations in emitted EM radiation. However, in order to apply EM-SCA, it is
required to be able to power the device on. If the cross-device portability of EM-SCA
models is ensured, it would be possible to utilise it to investigate a new but damaged
device (see Figure 17).

Malware Attack on CCTV

Damaged Phone Investigation

Digital 
Forensics 

Investigation 
Team

A B C

Move to Forensics 
Laboratory

D

Attempt to extract 
stored data

E F

?

Traditional Digital Forensics Model

Gathering insight 
on live device

through EMSCA

No Internal Storage

No interface to storage

Encrypted data

Locked device

Capture EM 
radiation

Pre-trained 
EMSCA 
model

Fine-tune and transform 
the model to the 

suspected devices

Build a model and 
extract insight of the 

suspected devices

Forensics 
Insight

Infected CCTV camera

Abnormal internal patterns 
of damaged phone

Cross-device Portability of the EMSCA

Figure 17: Potential solution for detection of infected CCTV camera(s) and abnormal
behaviour of the damaged phones using cross-device portability of the EM-SCA model

4.1.2 Malware Attacks on CCTV Cameras

Problem:
Assume a financial institution, such as a bank, is hijacked by Mirai malware in order

to steal crucial information about money transactions. Therefore, the bank’s CCTV
camera network has been hacked to track banking activities without its knowledge. The
criminals used the Mirai botnet attack to infect CCTV cameras in order to monitor
internal activities and eavesdrop on confidential information [Watson and Dehghantanha
2016, Alexandrie 2017]. The attacker can access the bank CCTV network from the
outside and an attacker can launch a DDoS attack by sending a specific command to the
server through Telnet from a Remote Terminal. The target of the attack is then sent to
the hacked CCTV cameras (or bots). In response, the alive bots would carry out the or-
der and send a torrent of network packets to the targeted victim server [Zhang et al. 2020].

Solution: Figure 17 explores the potential solution to detect the Mirai malware-
infected CCTV camera in a bank. This scenario explains the importance of the suggested
EM-SCAmodel to prove the significant difference in internal camera operation between a
non-compromised and a compromised camera by extracting EM emission. From another
perspective, it indicates the difference between the emission of the non-compromised
camera (default mode) and the compromised camera. The proposed model easily identi-
fies the variance of EM emission, and the identified camera can be further dissected for
extended investigation with the approval of the governing bodies or law enforcement
authorities. In such cases, the existing insight collections of similar or variant devices
ensure cross-device portability.
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4.2 Future Directions

Today, cross-device attacks are vital, and numerous works have predicted various
approaches for such attacks, most of them being based on power SCA [Picek et al.
2023, Han et al. 2022, Zhang et al. 2020]. Although cross-device EM-SCA analysis has
many limitations since both power and electromagnetic signals are typically produced
by the same circuit components on a device, power-based SCA models are comparable
to the EM-SCA. In addition, machine learning approaches have been used to filter out
extraneous noise from signals while performing cross-device power SCA [Han et al.
2022]. It is evident that machine learning models for SCA will be immensely benefi-
cial during live investigations without taking external noise effects into consideration.
In the future, the advancement of cross-device portability of ML-based EM-SCA of
smart devices requires further research and development. This includes refining existing
machine learning models to enhance accuracy and adaptability across various devices.
Additionally, exploring innovative techniques such as deep learning algorithms and
advanced signal processing methods could be instrumental. Continuous experimentation
with diverse devices and operating conditions is essential to ensure the scalability and
effectiveness of EM-SCA across a wide range of smart devices, leading to more reliable
and standardised methods in the field of digital forensics. Also, it may be feasible to
create cross-device EM-SCA models or to employ cross-models between power SCA
and EM-SCA.

EM-SCA methods enable non-intrusive device investigations, eliminating the need
for physical tampering to gather evidence. Although EM-SCA investigations are pas-
sive, conducting them in the near field is advisable. Far-field EM data acquisition is
suitable when relocating smart devices from their designated positions is impractical.
Achieving cross-device portability across different types of smart devices and domains
could revolutionize digital forensics, providing a new avenue for EM-SCA application
in investigations without device manipulation.

5 Conclusion

EM-SCAwas recently identified as a potential way for law enforcement to investigate IoT
devices and smartphones, which are seized by legal authorities. In comparison to mobile
forensics, EM-SCA for smart devices can deliver better outcomes in a non-invasive
manner without causing damage to the devices. Plenty of machine learning and deep
learning techniques are available to build models with high accuracy for EM signals of
different software behaviour over different smart devices. CNN has the highest level
of accuracy among machine learning algorithms for the purpose of identifying certain
software behaviour. In order to practically use EM-SCA across various devices in the
real world, generalizing EM-SCAmodels is crucial. Cross-device portability of EM-SCA
models ensures an effective forensic insight acquisition where the investigators can use
ready-made models that are trained to work with a diverse set of devices.

In the future, cross-device portability of EM-SCA methods is the hope for inves-
tigators to detect criminals due to the omnipresence of smart devices. Side-channel
analysis and machine learning aspects are important domains in digital forensics to build
a generalized efficient model for smart devices. cross-device portability-based EM-SCA
can play a role in real-world investigations by providing either court-admissible digital
forensic evidence or certain forensic insights to an investigator to break through and find
court-admissible evidence elsewhere.
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