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Abstract—In the era of Industry 4.0, the Internet of Things
(IoT) has emerged as a transformative force, with the prolif-
eration of IoT devices permeating various aspects of our daily
lives. However, this rapid adoption of IoT technology has also
given rise to an alarming increase in cyberattacks targeting these
devices. Among many avenues of cybersecurity, Electromagnetic
Side Channel Analysis (EM-SCA) stands as a crucial branch
of information security that enables attackers to eavesdrop on
and exfiltrate sensitive information, making it a critical concern
for IoT security. Among various security measures taken on IoT
platforms, data integrity is ensured through cryptographic hash
functions. This work explores the potential of utilising EM-SCA
to detect the presence of cryptographic hash functions on IoT
devices, which would play an important role at the surveillance
stage of an attack. In pursuit of this objective, this study
employs a set of supervised Machine Learning (ML) algorithms
that are intricately crafted to automatically identify distinct
patterns of EM radiation emissions associated with different
hash algorithms. The results of this investigation demonstrate
that the proposed methods can achieve classification accuracy
rates exceeding 80%. The findings of this work highlights that
an attacker can inspect an IoT device in a non-invasive manner
to identify its critical data integrity mechanisms before a suitable
subsequent action is taken to compromise it.

Index Terms—Electromagnetic Side-Channel Analysis, Cryp-
tography, Hash Functions, Internet of Things

I. INTRODUCTION

The term Industry 4.0, also known as the Fourth Industrial
Revolution, was officially unveiled at the World Economic
Forum’s yearly meeting in 2016 [1]. This revolution marks
a significant transition towards a digital era, where the fabric
of our world is increasingly woven with digital data at its
core. This transformative shift is reshaping the way we conduct
business, industry, and daily life, with digital data serving as
the linchpin for these changes [2] [3].

The Industry 4.0 primarily aims to leverage cutting-edge
technologies in the production and manufacturing processes,
leading to heightened automation and decreased human in-
volvement [4]. Hermann et al. outlined four key pillars within
Industry 4.0: Interconnection (which involves the seamless
linkage of people, machines, and sensors to one another,
creating a networked ecosystem.); Information Transparency
(the focus here is on augmenting the number of interconnected
objects and individuals, leading to improved data sharing
and visibility); Decentralized Decisions (the physical world is
managed automatically through decisions made by embedded

computers and sensors, enabling greater autonomy and effi-
ciency); and Technical Assistance (the integration of technical
support for decision-making processes, enhancing the quality
and speed of decision-making) [3]. These components collec-
tively define the core principles of Industry 4.0, designed to
usher in a new era of enhanced productivity and operational
efficiency.

The main driver of Industry 4.0 is connecting the Internet
of Things (IoT) to manufacturing. In this context, Things
refers to things such as sensors, actuators, and even mobile
phones that work together to achieve common goals in Cyber-
Physical Systems in Smart Factories. The core components of
Industry 4.0 include IoT, Cyber-Physical Systems (CPS), and
Smart Factories. CPS are responsible for making the linkage
between the physical world and the virtual world. Inside the
CPS, computations are made by the embedded devices, and
make decisions to control the physical process with the help of
feedback loops. By integrating IoT and CPS, Smart Factories
are playing a major role in Industry 4.0 [3].

Verma et al. pinpointed seven potential threats and vulner-
abilities that could impact the security of Industry 4.0 [5]:

• Cyber Attacks: In Industry 4.0, the more things are con-
nected and work together, the more they can be targeted
by cyber-attacks. Bad actors, such as cybercriminals, can
find weaknesses in IoT gadgets, network setups, and
software to get into systems without permission. They
might do this to take valuable information, mess up
important tasks, or demand money to fix things. There are
different types of attacks they can use, like DoS/DDoS
attacks, Man-In-The-Middle attacks, and Ransomware
attacks [5].

• Data Breaches: In Industry 4.0, a lot of data is floating
around, which can be a problem. Bad actors, such as
cybercriminals, might try to steal important data, e.g.,
business secrets, customer info, or financial records. This
can harm a company’s reputation and cost them money
[5].

• Insider Threats: Sometimes, the people working inside a
company can be a big risk for Industry 4.0 systems. This
includes employees who might want to harm on purpose.
They have the right to access important data and systems,
and they can cause problems either on purpose or by
mistake [5].

• Physical Threats: There are also physical dangers to
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worry about in Industry 4.0. Things such as theft, van-
dalism, or natural disasters can harm the devices and
structures that Industry 4.0 depends on. When these
things get damaged or disrupted, it can cause serious
problems [5].

• Supply Chain Vulnerabilities: Because Industry 4.0 sys-
tems are all linked together, they can be at risk from
supply chain attacks. This means that cybercriminals
might go after the companies that supply parts or make
the things used in Industry 4.0. By doing this, they can
mess with the supply chain and cause problems like
malware infections, data breaches, and other security
issues [5].

• Lack of Standards and Regulations: In Industry 4.0, it
is a problem that there are no clear rules and standards.
This can make things less secure. Without agreed-upon
ways of keeping things safe and no set of best practices,
companies that make things might have trouble making
sure their systems are secure and work well [5].

• Human Error: Even though Industry 4.0 uses fancy tech-
nology, people can still make mistakes that cause security
problems. Workers might accidentally mess things up by
doing things, such as setting things up the wrong way, not
managing passwords well, or falling for tricks in emails
[5].

A significant security concern in Industry 4.0 is data privacy.
In this context, people share their personal information with
IoT devices, thinking of this data as valuable. However, due
to security vulnerabilities in IoT devices, this information
can become exposed to the world. Typically, IoT devices
have limited resources, such as low-cost components, basic
processors, and small random-access memory. Despite being
able to connect to the internet, these devices often struggle to
ensure their security. Adding extra security measures to them
can be costly and might affect their performance [2] [5].
This research address this problem using machine learning
mechanism to detect running hash algorithms inside an IoT
device, such as NodeMCU, using Electromagnetic Radiation
(EM) emission.

A. Motivation and Research Gap

Most of the large security problems come from the hard-
ware, where attackers can take information right from the
physical parts that our safe and coded software uses. Side-
channel analysis is one of the most serious dangers for
hardware security [6]. There are several Side-channel attacks,
and Electromagnetic Side-channel Analysis (EM-SCA) is one
of the very important types of attack among them. Using
EM-SCA, hackers have managed to steal important data, like
cryptographic keys, from computers and even IoT devices
[7]. This shows that Side-channel analysis works well against
many security protections on computer systems [8].

When considering cost-effective IoT edge devices, the
NodeMCU is a simple microcontroller that can connect to
multiple sensors simultaneously, which makes it safer, af-
fordable, and cost-effective [9]. It is good at handling tasks,
such as controlling lights, keeping an eye on the temperature,

and improving location security such as home security [10].
NodeMCU-based devices can be a victim of crypto mining if
it is attacked by malware to manipulate their device functions
and hardware [9]. In such scenarios, hash calculations will
increase inside the device since crypto mining uses more
hash calculations. As a result, the need arises to detect hash
calculations happening inside the NodeMCU platform without
accessing the device inside.

B. Research Questions

In this work, the objective is to find a way to use EM-
SCA to detect hash algorithms implemented on the NodeMCU
platform. Towards this goal, the research focuses on answering
the following two questions:

1) Research Question 1: What is the most suitable method
to extract the internal program behaviour of NodeMCU de-
vices in security and forensic analysis?

Hypothesis: Electromagnetic radiation emitted by
NodeMCU devices reveals sufficient information about
their internal operations. The application of Electromagnetic
Side-Channel Analysis (EM-SCA) methods is feasible to
extract this information, providing valuable insights for digital
investigations.

2) Research Question 2: How to classify hash algorithms
which are implemented on the NodeMCU using EM radiation
data?

Hypothesis: Machine Learning algorithms can be used to
classify hash algorithms by training against extracted EM
radiation data.

The rest of the paper is organized as follows: Section
II presents existing methods to recover information from
electromagnetic side-channel analysis for hardware; Section III
describes the experimental procedure for detecting hash algo-
rithms by electromagnetic side-channel analysis in NodeMCU;
Section IV discusses the experiment results and Section V
concludes the paper.

II. RELATED WORK

Side-channel Analysis (SCA) poses a significant danger to
embedded systems. SCA encompasses various attack tech-
niques that rely on the leakage of different side-channel
information types. This includes signals related to power
consumption, electromagnetic emissions, and timing data [11].
These can be categorized based on their exploitation of how
the system consumes power, emits electromagnetic radiation,
and handles timing during processes. Various power analy-
sis methods, including statistical and machine learning ap-
proaches, have been successful in attacking practical systems
containing encryption algorithms [11].

Kocher et al. performed timing attacks on Diffie-Hellman,
RSA, and DSS algorithms. The attack can be viewed as a
problem of detecting a signal. This signal is characterized
by timing variations caused by the specific target exponent
bit of the algorithm. On the other hand, noise arises from
inaccuracies in measurements and timing variations due to
unknown exponent bits. The signal and noise characteristics
dictate the number of timing measurements needed for the
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attack. This is a very old and very first experiment that tries
to break the cryptosystem by using side-channel analysis [12].
Later, Kocher et al. demonstrated that the power consumption
of a computing device can serve as a side-channel through
which cryptographic keys can be extracted using Simple Power
Analysis (SPA) and Differential Power Analysis (DPA) [13]
[14].

During cryptographic operations executed by a CPU, the
power consumption of the device corresponds to the values
stored in its registers. Through the accumulation of an ample
number of power consumption traces acquired during crypto-
graphic operations with identical keys, it becomes feasible to
disclose the key using techniques such as differential power
analysis (DPA). The CPU’s power consumption is closely
linked to the electromagnetic (EM) radiation produced by
the device, thus exposing the EM side-channel. Consequently,
advanced versions of power analysis algorithms, such as dif-
ferential electromagnetic analysis (DEMA), were subsequently
developed to retrieve cryptographic keys by utilizing EM
traces [15].

Electronic circuits consume power and emit Electromag-
netic (EM) radiation as they operate. This power/EM side-
channel information can be leveraged to uncover data pro-
cessed within the internal states of a functioning system. For
instance, side-channel data from a mathematically secure cryp-
tographic algorithm running on a CPU, Field-Programmable
Gate Array (FPGA), or Application-Specific Integrated Circuit
(ASIC) can be employed to disclose the algorithm’s operations
and the secret key of it processes [16].

Aknesil et al. conducted work to detect memory leakage on
Raspberry Pi 3 Model B v1.2 by measuring EM radiation [16].
They concluded that the electromagnetic traces of memory
operations on a Raspberry Pi 3 provide insights into the data
that is either read from or written to the main memory. They
used deep learning-based side-channel analysis (SCA) and it
accurately retrieved all bytes within the 32-bit data field of
memory operations from a single trace, achieving accuracy
levels between 49% and 86% [16].

Hatun et al. also performed side-channel analysis on Rasp-
berry Pi by running the RSA algorithm. In their research,
they outlined the stages of the RSA algorithm and applied
different analyses to traces associated with specific segments
of the algorithm. In this research, the RSA algorithms running
on a Raspberry Pi were tested with SEMA and DEMA
attacks. When the SEMA attack was used, it revealed that in
an implementation without countermeasures, all the key bits
could be obtained with just one measurement. However, it was
found that the key could not be obtained using SEMA when
the algorithm was designed to resist such attacks. The DEMA
attack required more measurements and correlation analysis to
retrieve the bit value of the key, and it successfully obtained
the key [17].

Sayakkara et al. researched capturing weak EM signals and
using computers with sufficient processing power to analyze
them. It can capture and analyze against any kind of computing
device to detect software anomaly detection and cryptographic
key recovery [18]. Juyal et al. introduced a special high-gain
flat antenna designed for capturing electromagnetic emissions

Fig. 1: Near field probes for oscilloscopes (adapted from [22]).

from smart electronic devices. Furthermore, they conducted
an electromagnetic analysis attack on an IoT board, specif-
ically the Raspberry Pi [19]. Gunathilake et al. employed
an oscilloscope along with near-field EMC (electromagnetic
compatibility) probes to gather EM signals originating from an
Arduino UNO board running the PRESENT block cipher. To
enhance the signals, they utilized a 40-dB wide-band amplifier
before sending them to the oscilloscope. The primary aim of
this research was to identify any information leakage from
the Arduino board while the encryption algorithm was in
operation. They employed SEMA and CEMA analyses, and
the findings revealed that there was a possibility of seven
key bytes leaking [20]. Sayakkara et al. utilized a software-
defined radio (SDR), specifically the HackRF, to access the
radio frequency emissions from the devices. SDRs have proven
to be highly effective and are widely used for such side-
channel attacks. They positioned an H-loop antenna close to
a Raspberry Pi to capture electromagnetic radiation traces.
All the collected electromagnetic traces were initially in the
time domain and exhibited considerable variations in length.
To facilitate analysis, they transformed these samples into the
frequency domain using a Fourier transform. Subsequently,
they standardized the values and employed neural network
classifiers to assess these traces for different cryptographic
algorithms [21].

Tirumaladass et al. have demonstrated the effective use
of compact magnetic H-loop antennas for capturing electro-
magnetic (EM) radiation emitted by computing devices. In
their research, they used deep learning (implemented using
TensorFlow Keras) to classify three encryption algorithms
(3DES, AES128 and AES256) with an accuracy of 95%. Near-
field RF probes, also known as sniffer probes (see Fig 1), play
a vital role in pinpointing the sources of emissions emanating
from circuit boards or devices. These probes find significant
use in conducting preliminary EMC testing on circuit boards
or electronic products. Their primary purpose is to identify any
electromagnetic interference (EMI) that exceeds the regulatory
standards. These probes must be capable of precisely measur-
ing both the electric and magnetic fields of a module. To be
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effective, they need to maintain a consistent and unwavering
frequency response to allow users to accurately locate emission
sources [23].

Near-field probes can be broadly categorized into two types:
Electric field (E-field) probes and Magnetic field (H-field)
probes. E-field probes primarily detect electric fields and often
have a stub antenna-like appearance. They are not significantly
affected by their orientation when brought close to the device
under test (DUT). E-field probes are well-suited for identifying
emissions resulting from voltage changes in a circuit, includ-
ing emissions on individual pins or PCB traces when they
make direct contact with the circuits. H-field probes primarily
respond to magnetic fields and often have a loop-like design.
They are shielded to reduce sensitivity to electric field pickup.
Magnetic fields result from changes in the current within a
circuit. Unlike E-field probes, H-field probes are sensitive to
their orientation when applied to the DUT. They specifically
detect and respond to current within the same plane as the
loop when scanning over the device. Magnetic field probes
are particularly useful for detecting magnetic fields generated
by sources such as clock signals, serial data streams, control
signals, and switching power supplies, especially when these
signals are created by oscillations or harmonics [23] [24].

A recently published work that is conceptually most sim-
ilar to this research is presented by Robyns et al. [25].
They proposed a Convolutional Neural Network (CNN) ar-
chitecture specifically designed for classifying operations
carried out by the NodeMCU from a list of 8 poten-
tial operations. These include OpenSSL AES, native AES,
TinyAES, OpenSSL DES, SHA1-PRF, HMAC-SHA1, SHA1,
and SHA1Transform. Their CNN architecture was also used
to forecast the beginning and end times of these operations,
eliminating the need for firmware adjustments or manual
triggers in SCA. To assess their approach, they employed a
substantial dataset of 66 GB, encompassing 69,632 complex
traces of EM leakage, acquired using an USRP B210 SDR
device. The most successful version of their methodology
demonstrated an accuracy rate of 96.47% in classification and
managed to predict operation start and end times with an
average deviation of 34 microseconds from the actual values.

Amrouche et al. emphasized the different research projects
conducted within each individual category of SCA. In their
study, they provided an overview of the primary SCA cate-
gories and their application of Machine Learning (ML) and
Deep Learning (DL) techniques to access sensitive data [6].

III. METHODOLOGY

A. Experimental Setup
The experiments in this section uses a single NodeMCU

Amica device as the Device Under Test (DUT). This device
includes the Espressif ESP8266MOD WiFi module, which is
commonly found in IoT devices, such as smart light bulbs,
meters, and sensors. The ESP8266MOD is equipped with a
Tensilica L106 32-bit RISC processor that normally runs at a
default speed of 80 MHz. However, it can be overclocked to
160 MHz if needed [25].

The acquisition of EM radiation involved the utilization
of a HackRF One Software-Defined Radio (SDR) Device

Fig. 2: The experimental setup used for the EM data acquisi-
tion from the target DUT.

Fig. 3: The arrangement of the H-Loop antenna on top of the
NodeMCU.

in conjunction with a compact H-Loop magnetic antenna,
characterized by a diameter of 15 mm (see Fig 2). Estab-
lishing connectivity between the SDR device and the H-
loop antenna was facilitated through a semi-rigid RF cable,
permitting precise placement of the antenna in a predefined
location throughout the extended experimental duration (see
Fig 3). Both the SDR device and the Internet of Things (IoT)
device under scrutiny were seamlessly linked to the same host
computer.

This setup was strategically designed to foster experimental
control and efficient storage of the captured EM data. By con-
necting the SDR device and the IoT device to a common host
computer, a synchronized environment was established for
streamlined experimentation and data management. This syn-
chronized configuration not only facilitated the coordination
of experiments but also ensured the seamless integration of
EM data from both devices. The use of the HackRF One SDR
Device, coupled with the H-Loop magnetic antenna, provided
a robust platform for capturing and analyzing EM radiation,
contributing essential insights to the overall experiment.

The host computer, a Dell Inspiron with a 3.25 GHz
processor and 4 GB RAM running Ubuntu 22.4 LTS, played
a pivotal role in the experimentation process. Equipped with
essential tools, including the Arduino IDE, Gqrx SDR tool,
and GNU Radio Companion, it provided a robust platform for
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data acquisition. This computer served as the central hub for
controlling the experiments, managing the connected HackRF
One SDR Device, and processing the captured electromag-
netic data. The specifications of the Dell Inspiron ensured a
reliable and efficient environment for conducting experiments
and analyzing the outcomes seamlessly. For data analysis, a
virtual machine with a sufficient configuration was deployed,
featuring a 3.10 GHz processor, 128 GB RAM, and operating
on Windows 10. The Python environment utilized Anaconda
3, incorporating essential libraries such as NumPy, Pandas,
SciPy, Matplotlib, TensorFlow, Scikit-learn, and Seaborn. This
well-equipped virtual machine provided the computational
power and software infrastructure necessary for conducting
in-depth analyses on the captured electromagnetic data. The
inclusion of prominent Python libraries ensured a comprehen-
sive toolkit for statistical analysis, machine learning, and data
visualization, contributing to a thorough exploration of the
experiment’s outcomes.

B. Custom Firmware and Protocol
To streamline the acquisition of a pristine dataset of elec-

tromagnetic (EM) traces, a dedicated firmware was developed.
The firmware was specifically designed to implement MD5
and SHA1 hash algorithms for capturing electromagnetic
radiation. The experimentation process was segmented into
three phases. Initially, the MD5 hash algorithm was executed
in a loop to gather EM data. Algorithm 1 was employed to
generate MD5 hashes, utilizing a lengthy text paragraph as the
variable input. Throughout this procedure, 8 distinct datasets
were obtained utilizing the HackRF one device in conjunction
with the GNU Radio Companion.

Algorithm 1 Execute MD5 Loop

Include Arduino.h
Include MD5Builder.h
MD5Builder md5
function SETUP ▷ No setup code for now
end function
function LOOP

String text ▷ Long paragraph text to hash
md5(text)

end function
function MD5(String str)

md5.begin()
md5.add(str)
md5.calculate()

Return md5.toString()
end function

In the subsequent phase of experimentation, the focus
shifted to the execution of the SHA1 Hash algorithm in a
loop to amass electromagnetic (EM) data. Algorithm 2 played
a central role in this process, leveraging the same extensive
text paragraph as the variable input. A total of 8 datasets
were meticulously acquired during this phase, employing the
HackRF device in tandem with the GNU Radio Companion.

In the last segment of the experiment data collection, EM
radiation data was collected without the execution of any

Algorithm 2 Execute SHA1 Loop

1: Include Arduino.h
2: Include Hash.h
3: function SETUP ▷ No setup code for now
4: end function
5: function LOOP
6: String text ▷ Long paragraph text to hash
7: sha1(text)
8: end function

specific algorithms, solely relying on the operational status of
the NodeMCU device. During this phase, the NodeMCU was
in a functional state, yet no dedicated algorithms were actively
running. This approach aimed to capture and analyze the
inherent EM radiation emitted by the NodeMCU in its normal
operational state without the influence of additional algorith-
mic processes. This data collection phase provided valuable in-
sights into the ambient EM emission of the NodeMCU device
without the intentional modulation or interference introduced
by algorithmic operations. Understanding the baseline EM
radiation contributes to a comprehensive assessment of the
device’s natural electromagnetic behavior, which is essential
for contextualizing and interpreting the results obtained during
other experimental phases where specific algorithms were
employed.

C. Data Capture and Storage

In the experiment, three datasets of EM emanations were
captured during the above-mentioned three parts with the
labels md5, sha1 and nothing using GNU Radio Companion,
totalling 53.3 GB with the sample rate of 20 MHz [26]. One
dataset contains eight data files in eight different frequencies,
namely 51.7 MHz, 51.5 MHz, 52.8 MHz, 77.6 MHz, 79.5
MHz, 78.5 MHz, 81.2 MHz, and 82.3 MHz. To successfully
detect EM radiation from a target IoT device, it’s crucial to
identify the frequency at which information is leaking. Various
frequencies can provide valuable forensic insights, but there’s
currently no systematic method for precise identification. In
such cases, one reliable frequency available is the clock
frequency of the IoT device’s MCU chip [27]. For example, a
NodeMCU device typically operates at 80 MHz. Sometimes,
external EM noise from other sources may overlap with this
frequency, causing interference in EM radiation observation. In
such situations, using a higher harmonic frequency of the clock
frequency — essentially a multiple of the original frequency
— can be employed as the information-leaking frequency
[28]. Initially, two capturable data leaking frequencies, 52
MHz, and 80 MHz were identified by visualizing the captured
EM data through the GQRX tool [29]. Fig 4 illustrates the
view of GQRX software while observing the EM radiation
signals. To determine the frequency, the EM radiation was
observed by changing the center frequency of HackRF One
while moving the H-Loop antenna closer to and farther from
the NodeMCU.
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(a)

(b)

Fig. 4: Visualization of the EM radiation emitted from the
NodeMCU. (a) The center frequency is 51 MHz and the yellow
line in the 52 MHz is the NodeMCU leakage frequency. (b)
The center frequency is 77 MHz and the yellow line in the 80
MHz is the NodeMCU leakage frequency.

D. Development of the Classifier

Machine-learning classification problem that is focused on
this study includes classifying the pattern of electromagnetic
radiation signals to comprehend the internal behaviours of
Internet of Things devices. Neural network-based classifiers,
which are very flexible by modifying several parameters, are
used in this study. One fundamental neural network type is the
Multi-layer Perceptron (MLP) [30], where information flows
from the input layer to the output layer through one or more
hidden layers.

Additionally, this study employs Long Short-term Memory
(LSTM) architecture within neural networks [31]. An LSTM
network includes feedback connections, enabling it to analyze
sequences of data points collectively, in contrast to classical
neural networks that process individual data points. This char-
acteristic makes LSTM networks better suited for identifying
patterns in time series data, such as EM traces [32].

An EM trace is essentially a vector that depicts how a
signal’s amplitude changes over time. Given the high-speed
sampling employed in signal acquisition hardware, even a brief
EM trace spanning milliseconds can comprise millions of data
points. Using this raw data directly to train and test machine
learning models can have drawbacks, primarily in terms of

the time and computing resources required due to its high
dimensionality. Consequently, the EM traces obtained through
the described hardware setup are unsuitable for direct use in
training machine learning models. To address this, the EM
traces need preprocessing. This process transforms them from
a continuous time-domain signal into a format that provides
a manageable feature vector for machine learning models. To
classify EM traces related to Hash algorithm activity, labelled
EM traces are required. Initially, each EM trace is in the time
domain, which makes it susceptible to external noise-induced
fluctuations. To mitigate this, each trace is transformed into
the frequency domain using the Fast Fourier Transform (FFT)
while employing an overlapping sliding window approach
[32]. This operation generates a set of FFT vectors that
represent consecutive time intervals for each EM trace.

The dimensions of these FFT vectors are still too large,
though, to be employed straight away as a feature vector for
machine learning classification. The size of the FFT vectors
are further lowered to remedy this. To do this, each FFT
vector’s elements are divided into 10,000 uniformly spaced
bins. Without compromising generalizability, the maximum
element from each bin is chosen to serve as the representative
value. For each EM trace time period, this procedure yields a
feature vector with 10,000 entries.

An empirical analysis was carried out to ascertain the best
setup for a neural network that was supposed to identify EM
traces. An input layer, two hidden layers, and an output layer
made up the final neural network’s four layers. Based on this
empirical evaluation, the number of hidden layers and hidden
nodes inside each hidden layer were chosen.

IV. RESULTS AND DISCUSSION

While using the GQRX tool to capture EM radiation,
multiple frequencies were observed as adjusted the H-Loop
antenna’s distance from the NodeMCU.

After careful evaluation, it was determined that 52 MHz and
80 MHz were the most significant leakage frequencies due
to their higher signal strength. The ESP8266 chip’s datasheet
[13] specifies an external crystal frequency range of 24 MHz
to 52 MHz. Therefore, it is possible to reasonably attribute the
52 MHz leakage frequency to the NodeMCU. This conclusion
is supported by the observation that the frequency appeared on
the display when the H-Loop antenna was close to the chip
and disappeared when the H-Loop antenna was moved away
from the chip. Similarly, we identified 80 MHz as another
significant frequency while adjusting the H-Loop antenna’s
position [25].

When plotting the Power Spectral Density (PSD) of the EM
radiation emitted by the NodeMCU, a significant peak was
observed at the centre of the plot (see Fig 5). The large spike
is produced by the HackRF device and is referred to as a DC
offset [33]. The documentation for the HackRF One device
advises users to disregard it as it is a common occurrence in
every measurement.

The development of an effective neural network for the
precise classification of Electromagnetic (EM) traces was a
crucial aspect of this study. The neural network architecture
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Fig. 5: Visualization of the EM radiation emitted from the NodeMCU. (a) The center frequency is 51 MHz and the yellow
line in the 52 MHz is the NodeMCU leakage frequency. (b) The center frequency is 77 MHz and the yellow line in the 80
MHz is the NodeMCU leakage frequency.

TABLE I: Classification accuracy of hash algorithms.

Activity Precision Recall F1-Score

md5 0.84 0.92 0.88

nothing 0.94 0.95 0.95

sha1 0.94 0.84 0.89

comprised seven layers, encompassing one input layer, five
hidden layers, and one output layer. The determination of the
optimal number of hidden layers and hidden nodes within
each layer was grounded in empirical evaluation to ensure the
network’s efficacy.

The configuration of the hidden layers involved a strategic
distribution of hidden nodes. The first, second, third, fourth,
and fifth hidden layers comprised of 800, 500, 200, 100,
and 50 hidden nodes in order. This hierarchical arrangement
allowed the neural network to progressively extract and learn
intricate features from the input data, facilitating a nuanced
understanding of the underlying patterns in the EM traces.

The input layer played a pivotal role in processing the
feature vector, accommodating 1024 input nodes. This com-
prehensive input layer design was instrumental in capturing
the diverse aspects of the EM traces, providing the neural
network with a rich set of information for classification. On
the other end, the output layer was structured with three nodes,
representing the three distinct classes corresponding to the
hash algorithms and scenarios involving no activity.

The training process was a crucial phase in enhancing the
neural network’s classification capabilities. It involved the
utilization of 240 samples for each class, culminating in a
total of 720 training samples across the three classes. This
robust training dataset ensured that the neural network gained a
comprehensive understanding of the unique features associated
with each class, enabling it to make accurate classifications

during subsequent testing.
The empirical setting of the learning rate at 0.001 played

a pivotal role in optimizing the neural network’s training
process. The learning rate influenced the magnitude of adjust-
ments made to the network’s weights during the training phase,
striking a balance between convergence speed and avoiding
overshooting the optimal weights. The empirical fine-tuning
of this parameter underscored the meticulous approach taken
to enhance the neural network’s overall performance.

The culmination of these architectural considerations and
training processes resulted in a neural network classifier that
demonstrated commendable accuracy. The classification out-
comes, as outlined in Table I, indicated an accuracy exceeding
80% in correctly categorizing the two hash algorithms and sce-
narios characterized by no activity. The training and validation
loss curves of the trained model is illustrated in the Fig 6.
Furthermore, the confusion matrix of the classifier’s tests are
illustrated in Fig 7. This level of accuracy signifies the efficacy
of the developed neural network in discerning subtle patterns
within the EM traces and highlights its potential applicability
in real-world scenarios, particularly in the context of digital
investigations involving NodeMCU devices.

V. DISCUSSION AND CONCLUSION

The research addressed the primary inquiries posed at
the commencement of the investigation. The inaugural ques-
tion sought an effective methodology for extracting foren-
sic insights from NodeMCU devices. The investigation has
conclusively demonstrated that the application of EM-SCA
serves as a viable means to obtain these crucial insights. By
leveraging this technique, the study has successfully unveiled
a pathway for security and forensic experts to extract valuable
information from NodeMCU devices. Turning to the second
research question, which sought to elucidate the classification
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Fig. 6: Training and Validation Loss Curves for implemented
model.

Fig. 7: The confusion matrix of classifying Hash Algorithms.

of hash algorithms implemented on the NodeMCU, the find-
ings, delineated in Table 1, present a noteworthy outcome.
The experimental results unequivocally indicate that an ML
approach can be adeptly employed for the classification of
these hash algorithms, achieving an accuracy rate surpassing
80%. This revelatory insight opens new possibilities for en-
hancing the efficiency and accuracy of forensic investigations
involving NodeMCU devices. The success in addressing these
two pivotal research questions not only contributes to the
growing body of knowledge in the field but also has immediate
practical implications. Forensic analysts and security experts
can now rely on EM-SCA as a robust method for extracting
pertinent information from NodeMCU devices. Furthermore,
the integration of ML in hash algorithm classification on
NodeMCU devices promises a significant leap in the accuracy
of forensic analyses, providing a valuable tool for investigators
grappling with the intricacies of embedded systems. In conclu-
sion, the research has not only met but exceeded expectations
in providing comprehensive answers to the research questions.
The incorporation of innovative methodologies, such as EM-
SCA and ML, showcases the potential for advancing forensic
practices in the realm of NodeMCU device investigations.

These findings mark a significant stride forward, underscoring
the dynamism and adaptability required in the ever-evolving
landscape of digital forensics.

A. Limitations

This study is not without its inherent limitations, and a
primary constraint stems from the challenges associated with
conducting data analysis on virtual machines. The restrictive
nature of virtual environments, particularly in terms of avail-
able random access memory (RAM), poses a significant obsta-
cle to the seamless execution of model fitting processes. The
intricate computational demands of model fitting, exacerbated
by the limitations of virtual machine configurations, hinder
the comprehensive exploration of the data, and may lead to
sub-optimal results. Consequently, the findings derived from
this study should be interpreted within the context of these
computational constraints, acknowledging the potential impact
on the overall analytical outcomes.

Another noteworthy limitation pertains to the physical
characteristics of the NodeMCU chip, specifically its metal
shield. The research primarily focused on the electromagnetic
radiation emanating from the shield, recognizing it as a crucial
aspect of the side-channel analysis. However, it is imperative
to acknowledge that the presence of the metal shield introduces
complexities in capturing and interpreting the full spectrum of
electromagnetic signals. The shielding effect can potentially
attenuate or modify the emitted radiation, influencing the
accuracy and completeness of the forensic insights obtained.
Consequently, the scope of this research is delimited by the
challenges inherent in precisely characterizing the EM emis-
sion from within the shielded environment of the NodeMCU
chip.

B. Future Works

The culmination of the present experiment not only provides
valuable insights into NodeMCU device forensics but also lays
the foundation for potential avenues of future research and
exploration. These promising directions encompass diverse
aspects that could further enhance our understanding and
capabilities in the realm of embedded system analysis.

One compelling avenue for future investigation is the ex-
ploration of alternative hash functions in the context of SCA.
While the current study delved into the classification of hash
algorithms on NodeMCU devices, focusing on commonly used
ones, such as MD5 and SHA-1, there remains a vast landscape
of cryptographic hash functions that warrant examination. For
instance, the prevalence of SHA-256 and Scrypt in cryptocur-
rency applications raises intriguing possibilities for extending
side-channel analysis to these algorithms. Given the unique
characteristics of these hash functions and their paramount
importance in securing digital transactions, understanding
their behavior under electromagnetic radiation scrutiny could
unravel new dimensions in forensic analysis. This avenue
of research not only addresses the evolving cryptographic
landscape but also bolsters the applicability of side-channel
analysis to a broader spectrum of hash algorithms.



9

Another promising trajectory for future exploration involves
leveraging convolutional neural networks (CNN) for the clas-
sification of hash algorithms on NodeMCU devices. The
current study harnessed machine learning techniques for this
purpose, achieving an accuracy exceeding 90%. However, the
application of CNN, with its capacity to automatically learn
hierarchical features, may provide a more nuanced and so-
phisticated approach to algorithm classification. CNN’s ability
to discern intricate patterns within the EM radiation data
could potentially enhance the accuracy and efficiency of the
classification process. This avenue of research aligns with the
ongoing advancements in deep learning and artificial intelli-
gence, offering a contemporary perspective on the intersection
of machine learning and embedded system forensics.

Furthermore, a compelling avenue for future research lies
in the development of Python scripts to identify the bound-
ary lines of hash algorithms within the internal processes
of NodeMCU devices. Creating a script that discerns and
delineates the specific operations and transitions associated
with hash algorithm execution can contribute significantly
to forensic analyses. This script could aid investigators in
pinpointing the exact moments when hash algorithms are in-
voked, enabling a more granular understanding of the internal
workings of NodeMCU devices. Such insights could prove
invaluable in reconstructing digital timelines and establishing
a comprehensive narrative of events, enhancing the forensic
toolkit available for NodeMCU investigations.

The findings of the current experiment not only under-
score the potential applications of side-channel analysis in
NodeMCU device forensics but also illuminate exciting av-
enues for future research. Exploring alternative hash functions,
incorporating advanced ML techniques like CNN, and devel-
oping scripts for delineating internal processes all represent
promising directions that can elevate the field of embedded
system forensics to new heights. These prospective investi-
gations not only respond to current technological trends but
also anticipate the evolving challenges posed by emerging
cryptographic practices and the intricate internal workings of
embedded devices.
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