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ABSTRACT Modern processors tend to incorporate multiple CPU cores. These multiple CPU cores, running
at the same or different clock frequencies, enable the effective distribution of workload and efficiency
in energy consumption. Although Electromagnetic Side-Channel Analysis (EM-SCA) has been shown to
be an effective and non-invasive method to acquire forensic insights from smartphones and Internet of
Things (IoT) devices, the presence of multiple CPU cores has the potential to cause disruptions in this
process. This research focuses on analysing the impact of multi-core CPU emissions — specifically the
iPhone 13 and iPhone 14 Pro — on the EM-SCA-based forensic insights acquisition procedure. To achieve
this, we developed a novel multi-core EM-SCA model specifically for iPhone models by integrating
electromagnetic (EM) radiation traces captured from different core clusters of a single device. The developed
multi-core model is then subjected to three transfer learning processes: inductive learning, feature extraction,
and fine-tuning. The model is tested using individual single-core datasets collected at specific system-clock
frequencies of the device. The findings of both smartphones indicate that inductive transfer learning
consistently yields poor results, ranging between 5% and 20%, regardless of the core cluster. Although
feature extraction provides moderate accuracy for certain datasets — around 50% to 70% for the iPhone
13 and 20% to 92% for the iPhone 14 Pro — it is the fine-tuning process that proves to be the most
effective. Fine-tuning supports a wide range of datasets across different system-clock frequencies, achieving
classification accuracy as high as 99%. This highlights fine-tuning as the most reliable transfer learning
technique for multi-core forensic investigations. We also tested for catastrophic forgetting to evaluate the
robustness of the multi-core model when using single-core datasets from the same devices. The results
demonstrate that the accuracy of the multi-core model remains unchanged, even after the transfer learning
process across various datasets.

INDEX TERMS Catastrophic forgetting, cross-device portability, digital forensic investigation, EM-SCA
model, multi-core devices.

I. INTRODUCTION

Digital Forensics is a specialised field that is focused on the
recovery, analysis, and preservation of digital evidence from
electronic devices. It plays a crucial role in investigations
involving cybercrimes, data breaches, and other legal matters
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where digital evidence is pivotal [1], [2]. Digital forensics
experts use various tools and techniques to extract data,
including deleted files, encrypted information, and logs,
while ensuring the integrity of the evidence for use in legal
proceedings [3], [4]. This discipline is essential to ensure
the smooth execution of legal and corporate investigations
to uncover criminal and other misconduct in an increasingly
technology-driven world.
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In the current era, most forensic investigations heavily rely
on smart devices. This is due to the fact that smart devices are
increasingly present in everyday environments in contrast to
desktop and laptop computers. There is a continuous influx
of new smart devices, each with considerable modifications
and advances in technology [5], [6], [7]. These devices
— ranging from smartphones and tablets to smartwatches
and IoT devices — store vast amounts of data that can
be crucial to unravelling the details of a crime. However,
this rapid evolution of smart device technology poses a
significant challenge to forensic experts [8], [9]. The diversity
in hardware and software configurations, coupled with the
increased use of encryption and other security measures,
makes it difficult to effectively access, analyse, and interpret
data from smart devices. As a result, digital forensic
researchers are increasingly turning to advanced techniques,
such as Electromagnetic Side-Channel Analysis (EM-SCA)
to retrieve insight from these devices without necessarily
having to physically tamper with them [10], [11].

EM-SCA leverages the unintentional electromagnetic
(EM) radiation emission of electronic devices to infer
sensitive information, such as encryption keys, user activity,
or stored data [12], [13]. The EM-SCA technique has
been established as a powerful method to identify internal
software behaviours of dedicated smart devices, including
smartphones, IoT devices, smart wearables, and more.
Although this technique has proven effective in revealing
forensic insights from such devices, EM-SCA-based machine
learning (ML) models are typically tailored to specific
processor types, as they are trained on the EM data of
those processors [14], [15]. As a result, these models
lack cross-device portability, limiting their broader forensic
application. To address this challenge, Navanesan et al.
proposed enhancing the portability of EM-SCA-based ML
models to enable more versatile acquisition of forensic insight
across different types of smart devices [16].

Cross-device portability refers to the reuse of EM-SCA-
based ML models across different devices. When applying
a trained EM-SCA-based ML model from one device to
another, initial tests often yield poor results. Therefore, trans-
fer learning is required to enhance cross-device portability of
these models [16]. In previous work, it has been hypothesised
that several factors contribute to these poor results, including
external environmental EM noise, manual handling during
the data capture process, and the emergence of multi-core
smart devices. In this study, we aimed to analyse the
cross-device portability of multi-core devices to ensure effec-
tive forensic insight acquisition. To achieve this, we selected
devices from a single manufacturer with a multi-core
architecture—specifically, the iPhone 13 and iPhone 14 Pro.
The key contributions of this research are as follows:

o Cross-Device Portability Analysis of Multi-core

Devices:

We analysed the iPhone 13 and iPhone 14 Pro from the
perspective of multi-core devices to ensure cross-device
portability for forensic insight acquisition.
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« Validation of Catastrophic Forgetting:

We validated the phenomenon of catastrophic forgetting
in the EM-SCA-based ML model, which is crucial
for maintaining the performance of the model when
applying transfer learning techniques.

This study provides valuable insights into the challenges
and opportunities of utilising multi-core devices for digi-
tal forensic investigations. Evaluating the performance of
EM-SCA in extracting forensic insights from multi-core
smart devices not only helps to understand the capabilities
and limitations of EM-SCA as a forensic tool, but it
also helps to develop best practices and protocols for its
use in real-world investigations. As technology advances,
forensic experts must continuously adapt their techniques and
methodologies to keep up with the evolving landscape of
digital evidence.

This study focuses exclusively on analysing multi-core
devices using a single type of smartphone—the iPhone 13 and
iPhone 14 Pro—as a case study, which were selected for
their representativeness of current high-end mobile devices.
Although these models provide valuable insights into the
performance and software behaviour of modern smartphones,
it is important to note that the results may vary with
different smartphone brands, operating systems, or hardware
configurations. Although this represents a limitation, as the
analysis is limited for a manufacturer, it serves as a
stepping stone towards in broader research. Future studies
incorporating a wider range of devices could further enrich
the understanding of these dynamics across diverse mobile
platforms. By establishing a framework for cross-device
portability and validating our findings on these devices,
we aim to provide a pathway for future analyses of multi-core
devices from different manufacturers. This limitation under-
scores the need for additional studies to generalise the results
across a wider range of device architectures and brands.
This approach allows us to provide insights into cross-device
portability while laying the groundwork for future research
on devices from diverse manufacturers.

The rest of the paper is organised as follows. Section II
provides an overview of the foundational concepts related
to EM-SCA, forensic insight acquisition, and multi-core
devices, along with a discussion of state-of-the-art tech-
niques and advancements in these domains. Section III
outlines the experimental methodology for developing the
EM-SCA-based ML model, with a specific focus on
multi-core mobile devices, particularly the iPhone 13 and
iPhone 14 Pro. Section IV presents the experimental
results on applying various transfer learning techniques for
cross-device portability in multi-core mobile devices and
evaluates catastrophic forgetting to assess the robustness
of the multi-core EM-SCA-based ML model. Section V
provides a detailed discussion of the methodology and
the results, highlighting key findings, underlying reasons,
and potential limitations. Finally, Section VI offers a brief
summary of the findings and suggests future research
directions.
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Il. FORENSIC INSIGHT FROM MULTI-CORE DEVICES

A. EM-SCA FOR FORENSIC INSIGHT ACQUISITION
Electronic devices unintentionally leak information about
their internal operations through various channels, such as
power consumption, acoustic emissions, heat, EM radiation,
timing variations. These channels are collectively known
as side-channels [18], [19], [20]. Multiple side-channel
analysis techniques are available, including Correlation
Electromagnetic Analysis (CEMA), Differential Electro-
magnetic Analysis (DEMA), Correlation Power Analysis
(CPA), TEMPEST attacks, and Simple Power Analysis
(SPA) [13], [21], [22], [23]. In recent years, cutting-edge
innovations have integrated machine learning and deep
learning algorithms [24], [25], [26], [27], [28], where models
such as Convolutional Neural Networks (CNNs) [29], [30],
Recurrent Neural Networks (RNNs) [31], LSTM [32],
and Transformer-based architectures automatically identify
subtle features in leaked signals [33], [34]. In addition
to these, the emerging literature has begun to incorporate
spectral analysis, wavelet transform techniques, and sparse
signal recovery to enhance feature extraction from noisy
datasets [35]. These advanced techniques not only refine the
analysis of complex side-channel signals but also facilitate
real-time forensic investigations by reducing computational
overhead.

Smart devices pose significant challenges for forensic
investigators due to their inherent characteristics, such as
encrypted data, customised and personalised configurations,
rapidly evolving technologies, and real-time data processing
[36], [37]. These factors often necessitate physical tampering
of the devices to carry out an investigation. However,
such actions have the potential to make acquired evidence
inadmissible in courts and violate law enforcement protocols
related to the handling of evidence [38], [39]. Therefore, non-
invasive techniques are more appropriate for investigating
smart devices.

To address these challenges, Sayakkara et al. proposed the
application of EM-SCA as a non-invasive forensic insight
acquisition method. They demonstrated that it is possible to
identify EM radiation patterns corresponding to the internal
software behaviour of specific smartphones and IoT devices.
Although the insights gained through EM-SCA may not
always be admissible as direct evidence in courts of law,
they can significantly aid investigators by providing valuable
forensic leads [10], [11], [15].

B. CROSS-DEVICE PORTABILITY OF EM-SCA

Although the EM-SCA-based forensic insight acquisition
procedure was developed to acquire forensic insight from
smart devices, questions remain about its applicability across
a variety of devices with different or similar processors.
The proposed procedure uses specifically trained ML models
for individual processor types, raising concerns about its
generalisability. In the context of digital forensic investiga-
tions, this lack of generalisation could pose challenges for
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forensic investigators who need to analyse different types of
devices. Without a generalised EM-SCA-based ML model,
investigators would need to retrain an EM-SCA-based ML
model from scratch for each new device type, which is
time-consuming and inefficient [14].

To address this issue, Navanesan et al. introduced the
concept of cross-device portability and explored a potential
approach to ensure it. Their approach aims to ensure that
the EM-SCA-based ML model can be generalised and
effectively applied to a wide range of devices, even those
with varying processor types. Thus, cross-device portability
has the potential to significantly enhance the utility of
EM-SCA-based forensic insight acquisition in forensic
investigations, allowing investigators to apply a trained model
across different devices without the need for extensive
retraining [16], [17].

In addition to EM-SCA cross-device portability, Yu et al.
present an innovative approach to enhancing the quality of
side-channel traces by reducing noise through an unsuper-
vised deep learning framework. The proposed method is
designed to work on different devices, such as different ARM
and APR-based microprocessors, addressing the challenge
posed by variability in noise patterns inherent in cross-device
analysis. By leveraging unsupervised learning techniques, the
framework effectively transforms noisy side-channel signals
into cleaner, more informative traces without the need for
labelled training data [40].

C. MULTI-CORE SMART DEVICES FOR FORENSIC
INVESTIGATION

By integrating multiple CPU cores within a single device,
smart devices can handle complex tasks simultaneously, pro-
viding faster and more efficient processing power [41], [42].
This architecture is particularly beneficial for running
resource-intensive applications, such as those involving
artificial intelligence, real-time data processing, and gaming.
In addition, multi-core processors improve energy efficiency
by distributing workloads across multiple cores, reducing the
need for high power consumption in a single core [43]. As the
demand for more sophisticated and responsive smart devices
grows, multi-core architectures continue to play a pivotal role
in meeting these needs in smartphones, tablets, IoT devices,
and wearables [44].

Furthermore, Sayakkara et al. discussed modern battery-
powered devices that use energy-saving techniques such as
dynamic voltage-frequency scaling (DVFS) and multi-core
clustering (for example, ARM’s big.LITTLE) that adjust
CPU clock frequencies based on workload to optimise
energy efficiency and performance. However, these fre-
quency adjustments can obscure key signals used in EM-SCA
attacks, highlighting the need for future research to address
these challenges [14]. Moreover, while Sayakkara et al. and
Navanesan et al. conducted extensive analyses on smart-
phones and IoT devices featuring multi-core architectures,
their work did not delve into the EM traces generated
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by individual CPU cores. This omission leaves unexplored
potential variations in core-specific EM emissions, which
highlights a crucial area for future research in EM-SCA-
based forensic investigations [14], [16], [17].

In the context of digital forensics, understanding the
influence of multi-core architecture on retrieving internal
software behaviours through EM-SCA from smart devices is
essential. Multi-core processors, which are common in mod-
ern smart devices, can complicate the process of analysing
and acquiring EM-based forensic insights. Specifically, it is
crucial to examine how the system clock frequency of
individual cores affects the overall EM radiation pattern of
the device. This involves determining the extent to which the
system clock frequency of a specific core contributes to the
identification of that core during the EM-SCA-based forensic
insight acquisition procedure.

To effectively implement EM-SCA-based ML models
across different devices, especially in the context of cross-
device portability, it is important to verify the role of
multi-core architectures and their associated system clock
frequencies. This verification process helps ensure that the
model can accurately identify the software activities of
specific cores within a multi-core system. By understanding
these dynamics, investigators can better assess the perfor-
mance of the EM-SCA-based ML model and its ability
to acquire forensic insights from a wide range of devices,
regardless of their processor configurations.

lll. METHODOLOGY

A. EM-SCA MODEL OF MULTI-CORE DEVICES

This section provides a detailed overview of the experimental
procedure, including the steps for collecting EM radiation
from the selected multi-core devices and evaluating its
performance at various system clock frequencies of each
core. The evaluation is carried out by developing the EM-
SCA-based ML models to analyse captured EM data from
target devices. The next section covers the verification
of cross-device portability across various datasets derived
from each frequency, followed by a section that evaluates
catastrophic forgetting in the cross-device portability of the
EM-SCA model.

1) DATA COLLECTION FROM MULTI-CORE DEVICES
This study commenced with the selection of target devices
featuring multi-core architectures. For our experiment,
we chose the iPhone 13 and iPhone 14 Pro. This choice
was influenced by earlier research by Navanesan et al. [16],
who examined cross-device portability across various iPhone
models. Their findings provide a valuable foundation for
evaluating the performance and results specific to multi-core
devices in this study. Table 1 provides detailed specifications,
including the system clock frequencies for each core cluster
of the selected iPhones.

For the first time, we have planned an innovative
approach to collecting EM traces from multi-core devices by
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employing multiple HackRF One Software Defined Radio
(SDR) devices [45]. This method aims to enhance the
accuracy and efficiency of EM trace acquisition, particularly
from complex multi-core architectures. Our experiment
involves two different iPhone models, each with distinct
system clock frequencies corresponding to various clusters
of cores, as detailed in Table 1. By leveraging multiple SDRs,
we can simultaneously monitor and record the EM emissions
of these diverse cores, providing a comprehensive dataset for
analysis. Figure 1 illustrates the steps of the data collection

procedure.
Multiple SDR Data
Configuration Synchronization

FIGURE 1. Steps of EM data collection from the multi-core device.

Frequncy
Tuning

Multiple SDR Configuration involves utilising two
HackRF One SDR devices, each configured to target specific
frequencies associated with the core clusters of the respective
iPhone devices. This configuration allows for parallel data
collection, reducing the time required and increasing the
resolution of captured EM traces. Frequency tuning involves
each SDR being precisely tuned to the system clock
frequency of the target core cluster, ensuring optimal signal
acquisition and minimising interference. Figure 2 illustrates
the proposed data collection setup utilising two HackRF
One SDR devices. The diagram shows the arrangement of
equipment, connection interfaces, and the flow of data from
iPhones to the data processing system.

Host Computer

Host Computer Multi-core Device

EM Probes

| v
HackRF One SDRs

FIGURE 2. Schematic representation of the experimental setup for EM
trace collection using multiple HackRF One SDRs.

EM data were acquired while the device was per-
forming 10 distinct software activities with corresponding
labels: calendar-app, camera-photo, camera-video, email-
app, gallery-app, home-screen, idle, phone-app, sms-app,
and web_browser-app. When a user opens one application
while closing others on a smartphone, the operating system
dynamically manages the remaining background applications
to optimise performance and resource utilisation. Modern
mobile operating systems, such as Android and iOS, typically
suspend or partially terminate non-active applications to
free up memory and processing power for the foreground
application [46], [47]. Nevertheless, certain essential applica-
tions, such as music players, navigation tools, and messaging
services, may continue to operate in a limited capacity
to ensure uninterrupted functionality [48]. This strategic
resource management not only enhances the responsiveness
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TABLE 1. Specifications of the iPhone devices used in the experiment, including details of their SoCs, architectures, and system clock frequencies for

each core cluster.

Device Name System-on-Chip Architecture System-clock frequency-1 (f1) System-clock frequency-2 (f2)
iPhone 13 Apple A15 Bionic ARMyv 8.5-A 3.23 GHz (2 cores) 1.82 GHz (4 cores)
iPhone 14 Pro Apple A16 Bionic ARMYv 8.6-A 3.46 GHz (2 cores) 2.02 GHz (4 cores)

of the active application but also contributes to improved
battery life and overall system performance [46], [48].

In our experimental setup, EM data acquisition was
performed while executing a specific application on the
smartphone. Prior to launching the chosen application,
we manually terminated all other background applications to
ensure that the EM signals obtained were solely related to the
activity of the selected app. This approach helped to minimise
any interference from background processes, allowing for
more accurate data collection during the analysis. The data
acquisition process is outlined as follows:

« Data Collection from iPhone 13
Two SDR devices were utilised to capture EM traces:
one tuned to 3.23 GHz and the other to 1.82 GHz,
targeting the iPhone 13.

« Data Collection from iPhone 14 Pro
Two SDR devices were configured for EM data
acquisition: one tuned to 3.46 GHz and the other to
2.02 GHz, with the iPhone 14 Pro serving as the target
device.

2) DATA ACQUISITION PROCESS

The data acquisition process begins by identifying the target
device and its corresponding software activities, followed by
recording the EM radiation emitted during execution. The
system clock frequency is adjusted on the host computer
using GNU Radio Companion (GRC) for precise tuning. The
experiment employs the HackRF One SDR, operating within
a frequency range of 1 MHz to 6 GHz and a maximum
sampling rate of 20 MHz [14]. The GNU Radio library and
GRC facilitate the configuration and data processing, forming
the EM data processing pipeline. To enhance signal reception,
the RF Explorer near-field H-loop antenna is connected to the
HackRF One for close-proximity data acquisition from the
target device. The optimal signal reception point is manually
determined by moving the near-field antenna while plotting
the spectrogram at the CPU clock frequency of the DUT.
Once the strongest signal is identified, it is fixed for EM trace
acquisition. While prior research has explored automated
tools for optimising signal reception [49], this study relies
on manual observation to determine the ideal acquisition
position for each target device. The existing EM capture
process is illustrated in Figure 3.

In this experiment, two HackRF One SDRs are utilised to
capture EM radiation at different system-clock frequencies
based on the core clusters of the target device. Each SDR
is connected to a dedicated host computer, and each system
runs its own instance of the GRC application. Figure 4
provides an illustration of the experimental setup, showcasing
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FIGURE 3. The actual EM capture setup consists of an H-loop near-field
antenna connected to a HackRF One SDR, which interfaces with a
computer running GNU Radio Companion for signal processing.

the target device and the dual SDR configuration used
for EM data acquisition. Since our target devices are
well-known commercial brands, their SoC locations are
publicly documented. This familiarity allows us to accurately
map the SoC position and strategically place the H-loop near-
field antenna directly above it, ensuring optimal EM signal
acquisition.

10 \msnvnmasmii M —

-l 9B :
- 200 S0

FIGURE 4. The actual setup for acquiring EM data from multi-core target
devices using multiple HackRF One SDRs.

As illustrated in Figure 4, two HackRF One SDR devices
simultaneously capture EM radiation using individual H-loop
near-field antennas connected to each SDR, operating at a
high sampling rate of 20 MHz. During the data collection
process, a selected software activity runs on the target device.
For example, consider an iPhone 14 Pro executing the
web_browser-app. At the same time, the two HackRF One
SDR devices are tuned to 3.46 GHz and 2.02 GHz using their
respective GRC flow graphs, as shown in Figures 5 and 6.
These frequencies correspond to the two core clusters of the
Apple A16 Bionic processor, each operating at a different
system-clock frequency. EM traces captured concurrently by
both SDR devices for the same duration of time are stored as
.cfile files (e.g., web_browser-app.cfile) on their respective
host computers. This process is repeated for other software
activities at both frequencies to ensure comprehensive data
collection.
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Options
: Multcore

Generate Options: QT GUI

QT GUI Frequency Sink
FFT Size: 1.024k

Center Frequency (Hz): 3.46G
Banduwidth (Hz): 20M

Variable osmocom Source
1d: center_freq1 Sync: PG Clock
Value:3.46G Number Channels: 1
Sample Rate (sps): 20M
Cho: Frequency (Hz): 3.46G

Cho: Frequency Correction (ppm): O
[command| Cho: DC Offset Mode: 0

Cho: 1Q Balance Mode: 0

Cho: Gain Mode: False

Cho: RF Gain (dB): 1

Cho: IF Gain (dB): 40

Cho: BB Gain (dB): 18

Cho: Bandwidth (Hz): 20M

File Sink
File: ...eb_browser-app.cfile
Unbuffered: Off

Append file: Overwrite

Variable
Id: samp_rate
Value: 20M

QT GUI Waterfall Sink
FFT Size: 1.024k

Center Frequency (Hz): 0
Bandwidth (Hz): 20M

FIGURE 5. Flow graph of the iPhone 14 Pro tuned to a higher
system-clock frequency of 3.46 GHz.

Options
Titte: Multicore
Author: HP
Output Language: Python
Generate Options: QT GUI

QT GUI Frequency Sink
FFT Size: 1.024k

Center Frequency (Hz): 2.02G
Bandwidth (Hz): 20M

Variable osmocom Source

Syne: PG Clock

Value: 2.02G Number Channels: 1

Sample Rate (sps): 20M
02G

Cho: RF Gain (dB): 14
Cho: IF Gain (dB): 40
Cho: BB Gain (dB): 18

Cho: Bandwidth (Hz): 20M

Variable
Id: samp_rate
Value: 20M

QT GUI Waterfall Sink
FFT Size: 1.024k

Center Frequency (Hz): 0
Bandwidth (Hz): 20M

FIGURE 6. Flow graph of the iPhone 14 Pro tuned to a lower system-clock
frequency of 2.02 GHz.

The GRC software utilises a flow graph to configure
parameters for data acquisition. In this setup, the sample
rate defines the number of samples per second, while the
system-clock frequency of each core of the iPhone is assigned
to the variable centre frequency. The Osmocom Source block
represents the attributes of the HackRF One device, while the
Frequency Sink block and the Waterfall Sink block are used
to identify peak signals and analyse the EM signal patterns at
the designated frequency. Additionally, the File Sink block
is employed to store the acquired EM traces in the .cfile
format. The amplification settings were determined through
empirical experimentation, testing various configurations to
optimise signal clarity across different devices, as explored in
previous research. Based on the findings from this study, the
radio frequency power amplifier (RF), low-noise amplifier
(IF), and variable-gain amplifier (BB) were consistently set
to 14 dB, 40 dB, and 18 dB, respectively, throughout the
experiments to ensure reliable signal acquisition [14], [17].
Furthermore, for the iPhone 13, the centre frequencies in
both GRC flow graphs were set to 3.23 GHz and 1.82 GHz,
respectively.

3) DATA PREPARATION FOR EM-SCA MODEL
To use EM trace data with ML algorithms, it needs to be
pre-processed to extract relevant features. When a target
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device emits EM radiation, it reveals information about its
internal behaviour through various EM frequencies close to
the system clock frequencies of the CPU cores. Although we
account for the system clock frequency of multiple cores,
external noise can obscure these important signal variations
in the time domain. Converting the time-domain signal to
the frequency domain with techniques such as Short-Time
Fourier Transform (STFT) enhances the individual frequency
components, making it easier to identify and extract valuable
information.

The time-domain EM trace files were processed using
STFT with a window size of 2048 in-phase/quadrature (I/Q)
samples and an overlap of 256 I/Q samples, resulting in a 12%
overlap for each STFT window. A window size of 2048 1/Q
samples and an overlap of 256 I/Q samples were selected
based on empirical testing, evaluating various configurations
against the classification accuracy they produced. Through
systematic experimentation, this particular setting demon-
strated the best balance between preserving important signal
features and ensuring computational efficiency. Additionally,
existing studies [15] have also recommended using a window
size of 2048 and an overlap of 256 for similar types of EM
side-channel analysis, further supporting our choice. This
process generates a two-dimensional dataset: The frequency
dimension has 2048 columns (i.e., frequency channels), and
the time dimension consists of time points, each representing
a set of 2048 samples from the original time-domain signal.
Each STFT dataset is labelled according to the original
software activity of the smart device, which serves as a class
for the ML algorithm. The frequency dimension of each
STFT dataset, which contains 2048 features, is used as the
feature vector for the ML algorithm.

4) COMBINED DATASET FOR THE MULTI-CORE EM-SCA
MODEL

After collecting EM data from the target device at both
system-clock frequencies, the two sets of EM traces are
merged to develop an EM-SCA-based ML model. This
integration results in a combined model, referred to as the
multi-core model for the iPhone 13 and iPhone 14 Pro, which
incorporates EM emissions from both core frequencies.
Utilising dedicated SDRs for each core cluster enhances the
quality of captured EM traces, enabling the detection of subtle
variations that can reveal underlying computational processes
or potential security vulnerabilities.

For each specific software activity on the target device,
two distinct EM traces were recorded, corresponding to
the different system-clock frequencies. In total, data were
collected for ten different software activities, each executed
sequentially while two separate SDR devices captured EM
traces simultaneously. Consequently, each software activity
produced two independent sets of EM traces, which were
recorded by individual SDRs.

To prepare the dataset for training a deep neural network,
these EM traces were merged, aligning multiple feature
inputs under each software activity. For model training,
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10,000 STFT windows were extracted per class at each
frequency, resulting in 20,000 instances per class when
combining both frequencies. With a total of ten software
activity classes, this approach generated a dataset comprising
200,000 training instances.

5) MACHINE LEARNING APPROACHES FOR EM-SCA DATA
ANALYSIS

The dataset enables advanced analysis techniques, such as
assessing side-channel attacks and profiling performance.
An MLP neural network was trained separately for each
device to classify its software behaviour using EM trace
files. In other words, two distinct MLP models were
trained independently on EM traces collected from iPhone
13 and iPhone 14 Pro. Table 2 illustrates the MLP network
architecture, which includes an input layer with 2048 features
and an output layer with nodes corresponding to the number
of classes for each device. The network features five hidden
layers with ReLU activation and an output layer with
Softmax activation. For training, 20,000 samples per class
(10,000 samples per core’s system-clock frequency) were
used, with the data split into 90% for training and 10%
for testing. Given the large volume of data, a 10% test set
remains substantial for evaluation. While an 80:20 split is
a common practice, we opted for a 90:10 split to maximise
the training data available for model learning, which is
particularly beneficial when working with a limited dataset.
This larger training set allows the model to capture underlying
patterns more effectively, while the 10% test set provides a
reliable performance assessment. Furthermore, our approach
is validated through k-fold cross-validation on the combined
dataset. Each model was trained for 30 epochs with the
network using stochastic gradient descent (SGD) as the
cost/optimisation function with a learning rate of 0.001 and
sparse categorical cross-entropy as the loss function, and a
validation dataset consisting of 10% of the training data was
randomly selected for each epoch. The Keras API from the
TensorFlow library was used for developing and testing the
networks.

target devices, iPhone 13 and iPhone 14 Pro, named the multi-
core model. The cross-device portability of the multi-core
model is tested in two ways: first, using the single-core
dataset (collected from one frequency) used to build the
multi-core model. Second, using various datasets collected at
the specific frequencies of the core clusters at different times.
This evaluation aims to verify the robustness and applicability
of the multi-core model across datasets captured at different
times but at varying core-cluster frequencies.

1) ASSESSING INDIVIDUAL CORE DATASETS COLLECTED AT
DIFFERENT TIME INTERVALS

Subsequently, multiple EM traces were collected at various
system-clock frequencies of the cores in the dedicated
device both at the same and different times to evaluate the
cross-device portability of the combined model. This includes
datasets from all core frequencies of the specific target device,
as explained in Section III-A4. Identical iPhone 13 and
iPhone 14 Pro devices were used to collect multiple datasets
at various core frequencies over different time intervals. The
dataset names and their corresponding details are presented
in Table 3.

TABLE 3. Index of datasets and their corresponding details for the
multi-core target devices.

Dataset Device Name | System-clock- Time interval
Index frequency (GHz)

i13-1-f1-t1 iPhone 13_I 3.23 (f1) t
113-11-f; -12 iPhone 13_1T | 3.23 (A1) 2
113-111-f; -13 iPhone 13_IIT | 3.23 (f1) t3
113-IV-f1-14 iPhone 13_IV | 3.23 () 1
113-IV-fo-14 iPhone 13_IV | 1.82 (f2) ta
i13-IV-f1-t5 iPhone 13_IV | 3.23 (f1) ts
i13-IV-fo-tg iPhone 13_IV | 1.82 (f2) 16
i14Pro-f1-t7 iPhone 14 pro | 3.46 (f1) 17
i14Pro-fa-t7 iPhone 14 pro | 2.02 (f2) t7
i14Pro-fi -t iPhone 14 pro | 3.46 (f1) 18
114Pro-fi -tg iPhone 14 pro | 3.46 (f1) tg
i14Pro-f1-t10 iPhone 14 pro 3.46 (f1) to
i14Pro-f1-t11 iPhone 14 pro | 3.46 (f1) t11
i14Pro-fa-t12 iPhone 14 pro | 2.02 (f2) ti2
114Pro-fa-t13 iPhone 14 pro | 2.02 (f2) t13
114Pro-fa-t14 iPhone 14 pro | 2.02 (f2) t14
i14Pro-fa-t15 iPhone 14 pro | 2.02 (f2) t15

TABLE 2. The structure of the deep neural network architecture for the
combined dataset from multi-core device with data from 10 different

internal software behaviours.

Layer Type Output Shape | No. of Parameters
dense (Dense) (ReLu) (None, 1400) 2,868,600
dense_1 (Dense) (ReLu) (None, 800) 1,120,800
dense_2 (Dense) (ReLu) (None, 500) 400,500
dense_3 (Dense) (ReLu) (None, 200) 100,200
dense_4 (Dense) (ReLu) (None, 100) 20,100
dense_5 (Dense) (Softmax) (None, 10) 1,010

Total trainable parameters 4,511,210

B. CROSS-DEVICE PORTABILITY OF THE MULTI-CORE

DEVICE

An EM-SCA-based ML model is created using the combined
dataset of each CPU core’s EM emissions collected from the
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C. CATASTROPHIC FORGETTING

Catastrophic forgetting, also known as catastrophic inter-
ference, is a phenomenon in neural networks where a
model loses previously learnt information when learning
new data [50], [51]. This issue is particularly common in
sequential learning scenarios, such as transfer learning or
when training on multiple tasks. When a model is trained on a
new task, the updates to the network’s weights can overwrite
the knowledge gained from previous tasks, leading to a sig-
nificant drop in performance on earlier tasks. This challenge
is amajor concern in the development of artificial intelligence
(AD) systems that need to retain knowledge over time and
across different domains, necessitating strategies such as
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regularisation techniques, rehearsal methods, or architectural
changes to mitigate its effects [52].

The EM-SCA-based ML models are fundamentally
constructed using MLP neural networks. To ensure the
generalisability of the model across various devices, the
cross-device portability of the EM-SCA model incorporates
transfer learning. However, it is crucial to assess the potential
for catastrophic forgetting within the EM-SCA-based ML
models when applying transfer learning between different
devices. This assessment is essential to maintain the integrity
and effectiveness of the model, as catastrophic forgetting
could lead to the loss of previously learnt knowledge when
adapting the model to new devices.

To ensure the integrity of the EM-SCA multi-core model,
this phenomenon was assessed on both the iPhone 13 and
iPhone 14 Pro multi-core models as part of the transfer
learning process. This evaluation aimed to preserve the
performance of the model across different devices without
losing accuracy or previously acquired knowledge during
transfer learning. This process involved initially testing the
accuracy of each device’s multi-core model before applying
any transfer learning. Following this, the three phases of
transfer learning — inductive learning, feature extraction, and
fine-tuning — were conducted using a single-core dataset
specific to each device. Once the multi-core model of the
iPhone 13 and iPhone 14 Pro had been trained on these
new data, the accuracy was retested on the original data to
assess whether it had retained its initial performance after
undergoing transfer learning. This approach helps to verify
that the model remains reliable and does not suffer from
catastrophic forgetting after learning new data.

To effectively address catastrophic forgetting and accu-
rately report variations in accuracy, the percentage change
between different training phases (e.g., before and after
transfer learning) is calculated using Equation 1. This
approach ensures a clearer representation of even slight
variations in accuracy, providing insight into the model’s
ability to retain learnt knowledge over successive training
phases.

Percentage_Change

New_Accuracy — Previous_Accuracy
= x 100 (1)

Previous_Accuracy

IV. RESULTS

A. EM-SCA MODEL OF MULTI-CORE DEVICES

This section presents the outcomes of our experiments using
combined datasets derived from the core clusters of both the
iPhone 13 and iPhone 14 Pro. As detailed in Section III-A4,
each device’s dataset was integrated with its respective
core cluster frequencies. We then applied an individual
MLP model to these combined datasets for iPhone 13 and
iPhone 14 Pro, as outlined in Section III-AS5. The resulting
performance metrics are analysed and discussed using
confusion matrices and accompanying tables. Confusion
matrices are generated based on the classification results for
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each software activity, with class indices corresponding to
those activities listed in Table 4.

TABLE 4. Label indexing of software applications used for classification
with the MLP neural network model.

Class Index | Class Name
0 calendar-app

1 camera-photo
2 camera-video
3 email-app

4 gallery-app

5 home-screen
6 idle

7 phone-app

8 sms-app

9

web-browser-app

Figure 7a shows the confusion matrices for the classifier
applied individually to the combined dataset of the iPhone
13, while Figure 7b presents the confusion matrix for the
iPhone 14 Pro, which achieved accuracies of 99.43% and
99.70%, respectively, on the test data. Additionally, our
approach is validated through 5-fold cross-validation on the
combined dataset of each device, as presented in Table 35,
confirming that the 90:10 split ensures a robust model
evaluation. Tables 6 and 7 provide the classification report for
the respective iPhone 13 and iPhone 14 Pro models. Other
machine learning metrics, such as precision, recall, and F1
score, provide results of either 99% or 100% for each class
on both the iPhone 13 and iPhone 14 Pro.

TABLE 5. Cross-validation results for the combined dataset of iPhone 13
and iPhone 14 Pro.

Combined Dataset | Fold1 | Fold2 | Fold3 | Fold4 | Fold 5
iPhone 13 0.9895 | 0.9943 | 0.9944 | 0.9971 | 0.9960
iPhone 14 Pro 0.9933 | 0.9947 | 0.9944 | 0.9963 | 0.9953

TABLE 6. The classification report of the iPhone 13 combined dataset,
assessing 10 software behaviours through a chosen deep learning model.

Class Precision | Recall F1- Support
score
calendar-app (0) 1.00 0.99 0.99 1993
camera-photo (1) 0.99 1.00 1.00 1987
camera-video (2) 0.99 0.99 0.99 2021
email-app (3) 1.00 0.99 0.99 2000
gallery-app (4) 0.99 0.99 0.99 1945
home-screen (5) 0.99 1.00 1.00 1975
idle (6) 1.00 1.00 1.00 1977
phone-app (7) 1.00 1.00 1.00 2047
sms-app (8) 0.99 0.99 0.99 2095
web-browser-app (9) | 0.99 1.00 1.00 1960
Macro Avg 0.99 0.99 0.99 20000
Weighted Avg 0.99 0.99 0.99 20000
Accuracy 0.99 20000

B. COMBINED MODEL ON INDIVIDUAL CORE DATASETS

Two multi-core models were developed, one for the iPhone
13 device and the other for the iPhone 14 Pro device. For each
model, the EM data from all CPU cores of the corresponding

VOLUME 13, 2025
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FIGURE 7. Confusion matrix for the multi-core dataset from iPhone 13

and iPhone 14 Pro, with labels representing software activities as
referenced in Table 4.

TABLE 7. The classification report of the iPhone 14 Pro combined dataset,
assessing 10 software behaviours through a chosen deep learning model.

Class Precision | Recall F1- Support
score
calendar-app (0) 1.00 1.00 1.00 1993
camera-photo (1) 1.00 1.00 1.00 1987
camera-video (2) 1.00 1.00 1.00 2021
email-app (3) 0.99 1.00 1.00 2000
gallery-app (4) 1.00 1.00 1.00 1945
home-screen (5) 0.99 1.00 1.00 1975
idle (6) 1.00 1.00 1.00 1977
phone-app (7) 1.00 1.00 1.00 2047
sms-app (8) 1.00 1.00 1.00 2095
web-browser-app (9) 1.00 0.99 0.99 1960
Macro Avg 1.00 1.00 1.00 20000
Weighted Avg 1.00 1.00 1.00 20000
Accuracy 1.00 20000

device were used. For the iPhone 13, the accuracy reached
99.94% at a system clock frequency of 3.23 GHz and 99.78%
at 1.82 GHz, as shown in Figure 8. The model’s performance
was higher at the 3.23 GHz core frequency. Similarly, for
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the iPhone 14 Pro, the accuracy was 99.91% at 3.46 GHz
and 99.99% at 2.02 GHz, with the 2.02 GHz core frequency
yielding the best prediction results, as illustrated in Figure 8.
Furthermore, the results obtained for the iPhone 13 and
iPhone 14 Pro are individually validated through 5-fold cross-
validation to ensure the accuracy of the derived outcomes.
This shows that regardless of which CPU core’s EM emission
data is used, the multi-core model does not indicate any
significant difference in accuracy.

1,000 0.9999
0.9994 Devices
[ iPhone 13 0.9991

0.999 1 I iPhone 14 Pro
2 0.998 0.9978
g
=
[}
o
< 0997 4

0.996

0.995 -

3.23 1.82 3.46 2.02
Frequency (GHz)

FIGURE 8. Evaluating the accuracy of individual cores of the iPhone 13
and iPhone 14 Pro using the combined dataset from both cores of each
device.

C. iPhone 13 MULTI-CORE DEVICE

This section examines the results of applying transfer learning
techniques to evaluate the cross-device portability of various
datasets from the multi-core iPhone 13 device. Figure 9
presents the accuracy values when applying transfer learning
techniques between the combined model of the dedicated
cores of the iPhone 13 and the datasets collected at different
times, based on the specific system-clock frequency of the
core. The x-axis represents the datasets of EM traces captured
at different times during the operation of ten different
software activities, as described in Section III-Al. Among
these, 113-1V-fi-#4 and 113-1V-f»-t4 EM traces were collected
simultaneously but at different frequencies, as shown in
Figure 4. The y-axis shows the accuracy values for each
dataset across three types of transfer learning techniques.
The bar plot illustrates the accuracy of each dataset during
the transfer learning processes of inductive learning, feature
extraction, and fine-tuning.

Both system-clock frequencies yield poor results when
applying inductive transfer learning without modifying the
multi-core model for new datasets. However, most datasets
collected at 3.23 GHz achieve better accuracy, ranging from
60% to 72%, in the feature extraction technique compared to
those collected at 1.82 GHz. Despite this, both core-cluster
frequencies demonstrate significant improvement, with accu-
racy reaching approximately 99% during the fine-tuning
process.
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FIGURE 9. Accuracy of three types of transfer learning techniques on
datasets collected at different times and frequencies (3.23 GHz and
1.82 GHz) using various iPhone 13 devices.

1) EM DATA ACQUISITION FROM iPhone 13 AT 3.23 GHz
Figure 10 presents a comparison of the confusion matrices for
three transfer learning techniques: inductive learning, feature
extraction, and fine-tuning. These techniques were applied to
a newly collected dataset from one of the iPhone 13 devices
operating at a system-clock frequency of 3.23 GHz, using
a multi-core model of the iPhone 13. The figure highlights
how each transfer learning approach impacts classification
accuracy and performance, offering a detailed view of the
effectiveness of these methods on the dataset. The pattern
of the confusion matrices clearly demonstrates how each
transfer learning technique aids in classifying the software
activities. Among the three techniques, feature extraction
provides better predictions, but fine-tuning achieves the most
accurate classification across all classes. Figure 11 illustrates
the accuracy and loss during the training process when
applying the single-core dataset collected at 3.23 GHz from
the iPhone 13 to a multi-core model of the iPhone 13,
operating at both 3.23 GHz and 1.82 GHz. This comparison
uses two transfer learning techniques: feature extraction and
fine-tuning. The diagram shows that fine-tuning exhibits a
more effective learning pattern, achieving higher accuracy
with less loss compared to feature extraction for the given
dataset within a much smaller number of epochs.

2) EM DATA ACQUISITION FROM iPhone 13 AT 1.82 GHz
Figure 12 presents a comparison of the confusion matrices for
the iPhone 13 dataset collected at a frequency of 1.82 GHz
with the multi-core models. This dataset was gathered
simultaneously with the dataset collected at 3.23 GHz,
as described in Section ITI-A 1. The confusion matrix for fea-
ture extraction shows lower accuracy and weaker prediction
patterns across the classes compared to the dataset collected
at the 3.23 GHz system-clock frequency at the same time.
However, fine-tuning transfer learning significantly improves
the prediction accuracy, reaching approximately 99.6%,
which is nearly identical to the accuracy achieved by the
other core dataset collected at the same time with fine-tuning.
This demonstrates that while feature extraction struggles with
accurate classification, fine-tuning consistently delivers high
accuracy across both datasets.

Figure 13 illustrates the learning patterns of both the fea-
ture extraction and fine-tuning transfer learning techniques
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FIGURE 10. Comparison of the confusion matrix for the

i13-1V-f; -t, dataset when applying the three types of transfer learning
techniques on the multi-core model of the iPhone 13, with labels
referencing Table 4.

applied to the dataset collected from the iPhone 13 at a
core frequency of 1.82 GHz at a specific time. The diagram
highlights that the fine-tuning technique achieves higher
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FIGURE 11. The accuracy loss diagram for the feature extraction and
fine-tuning processes of the i13-1V-f;-t, dataset on the multi-core model
of the iPhone 13.

accuracy in fewer epochs compared to feature extraction.
This demonstrates the efficiency of fine-tuning in rapidly
optimising the model, resulting in superior accuracy with
reduced training time. In contrast, the feature extraction
method requires more epochs to converge, indicating its
slower learning curve in this scenario.

D. iPhone 14 PRO MULTI-CORE DEVICE

This section presents the results of applying transfer learning
techniques to assess the cross-device portability of datasets
collected from the multi-core iPhone 14 Pro. Figure 14
displays the accuracy of various datasets collected from the
iPhone 14 Pro at system-clock frequencies of 3.46 GHz and
2.02 GHz. The two datasets, i14Pro-fi-t7 and il14Pro-f>-t7,
were gathered simultaneously using two HackRF One SDR
devices, with each SDR tuned to a specific frequency. The bar
graph illustrates the accuracy levels of each dataset across the
three stages of the transfer learning process: inductive transfer
learning, feature extraction, and fine-tuning, as applied to
the iPhone 14 Pro’s multi-core model. This comparison
highlights the performance of the datasets at each stage,
providing insights into the effectiveness of transfer learning
techniques at different system-clock frequencies.

The results reveal varying accuracy transformations at
both 3.46 GHz and 2.02 GHz frequencies. Inductive transfer
learning demonstrates very poor performance when applied
to the multi-core model of the iPhone 14 Pro. In contrast to
the iPhone 13, the iPhone 14 Pro achieves better accuracy
at 2.02 GHz during the feature extraction stage compared
to 3.46 GHz. However, fine-tuning yields excellent accuracy
for both system-clock frequencies, with results around 99%.
Although 2.02 GHz provides slightly higher accuracy during
fine-tuning, the 3.46 GHz frequency also achieves a strong
accuracy, close to 99%.
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FIGURE 12. Comparison of the confusion matrix for the

i13-1V-f,-t, dataset when applying the three types of transfer learning
techniques on the multi-core model of the iPhone 13, with labels
referencing Table 4.

1) EM DATA ACQUISITION iPhone 14 PRO AT 3.46 GHz

Figure 15 presents a comparison of the confusion matrices
for three transfer learning techniques applied to the

94963



IEEE Access

L. Navanesan et al.: Impact of Multiple CPU Cores to the Forensic Insights Acquisition

Model Accuracy 50 Model Loss
0.30 - —— Training Loss
Eo2s
e
=2
3
< 0.20
0.15 —e— Training Accuracy
0 10 20 30 0 10 20 30
Epochs Epochs
(a) Feature Extraction
Model Accuracy Model Loss
10 1.25 —+— Training Loss
0.9 1.00
>
Q
Zos 20.75
3 S
S 0.50
<o0.7
0.25
0.6 —e— Training Accuracy
0.00
2 4 6 8 10 2 4 6 8 10
Epochs Epochs

(b) Fine-tuning

FIGURE 13. The accuracy loss diagram for the feature extraction and
fine-tuning processes of the i13-IV-f,-t, dataset on the multi-core model
of the iPhone 13.
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FIGURE 14. Accuracy of three types of transfer learning techniques on
datasets collected at different times and frequencies (3.46 GHz and
2.02 GHz) using iPhone 14 Pro smartphone.

i14Pro-f-t7 dataset, captured at a system-clock frequency of
3.46 GHz. The prediction performance for various classes
using inductive transfer learning and feature extraction tech-
niques falls below expectations, indicating poor classification
accuracy. However, accuracy improves significantly when the
fine-tuning technique is applied to the multi-core model of
the iPhone 14 Pro. Interestingly, these results contrast with
those of the iPhone 13, which achieved better performance at
a system-clock frequency of 3.23 GHz. This suggests that the
iPhone 14 Pro may require different tuning parameters for
optimal accuracy compared to the iPhone 13. Additionally,
Figure 16 illustrates the learning curve of accuracy and loss
when applying feature extraction and fine-tuning techniques
to the dataset collected at 3.46 GHz using the multi-core
model. The diagram demonstrates that fine-tuning requires
fewer epochs to achieve an accuracy of 99%, highlighting
its efficiency in optimising the model compared to feature
extraction.
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FIGURE 15. Comparison of the confusion matrix for the

i14Pro-f,-t; dataset when applying the three types of transfer learning
techniques on the multi-core model of the iPhone 14 Pro, with labels
referencing Table 4.

2) EM DATA ACQUISITION iPhone 14 PRO AT 2.02 GHz
Unlike the iPhone 13, the iPhone 14 Pro demonstrates better
performance at a lower system-clock frequency (2.02 GHz)
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FIGURE 16. The accuracy loss diagram for the feature extraction and
fine-tuning processes of the i14Pro-f; -t; dataset on the multi-core model
of the iPhone 14 Pro.

than at the higher frequency of 3.46 GHz. Notably, the
i14Pro-f>-t7 dataset achieves significantly higher accuracy
during the feature extraction process. Fine-tuning further
enhances this performance, improving the classification
accuracy for each software activity, as shown in Figure 17.
It is important to note that this dataset was collected
simultaneously with the i114Pro-f;-#; dataset, highlighting the
distinct behaviour of the two frequencies when applied to
transfer learning techniques.

Figure 18 illustrates the learning curves for the feature
extraction and fine-tuning transfer learning processes applied
to the il4Pro-f>-t7 dataset using the multi-core model of
the iPhone 14 Pro. While both learning curves demonstrate
high performance, feature extraction takes approximately
25 epochs to reach an accuracy of around 93%. In contrast, the
fine-tuning technique achieves 99% accuracy in just 8 epochs.
This indicates that, although feature extraction performs well,
fine-tuning not only attains a higher accuracy but does so
much more quickly, highlighting its efficiency in the learning
process.

E. CATASTROPHIC FORGETTING OF MULTICORE MODELS

Catastrophic forgetting is a common challenge in transfer
learning, where a model forgets previously learnt information
when adapting to new tasks. Figure 19 illustrates the confu-
sion matrices of the iPhone 13 and iPhone 14 Pro multi-core
models after the transfer learning process, aimed at ensuring
the cross-device portability of EM-SCA-based ML models.
Previously, Figure 7 presented the confusion matrices of the
iPhone 13 and iPhone 14 Pro following the initial training
on the combined dataset, before transfer learning. Notably,
the accuracy of the confusion matrices remains consistent
before and after applying transfer learning, as shown in
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FIGURE 17. Comparison of the confusion matrix for the

i14Pro-f,-t; dataset when applying the three types of transfer learning
techniques on the multi-core model of the iPhone 14 Pro, with labels
referencing Table 4.

Figure 20. This indicates that the models did not experience
any significant loss of performance or catastrophic forgetting
during the learning process.
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FIGURE 18. The accuracy loss diagram for the feature extraction and
fine-tuning processes of the i14Pro-f,-t; dataset on the multi-core model
of the iPhone 14 Pro.

To quantify catastrophic forgetting, we report the per-
centage change in accuracy across the training phases. The
accuracy dropped by 0% when applying transfer learning,
highlighting the model’s ability to retain previously learnt
information. Therefore, it can be concluded that the dedi-
cated transfer learning techniques applied to these models
successfully preserved their original accuracy and did not
lead to any degradation in classification performance. This
comparison helps determine whether the model retains its
original classification performance after being exposed to
new data through transfer learning.

V. DISCUSSION

A. FEATURE EXTRACTION OF MULTI-CORE DEVICE

Feature extraction for individual cores in our multi-core
model reveals notable differences when implementing cross-
device portability, as illustrated in Figures 9 and 14. For
the iPhone 13, transfer learning-based cross-device porta-
bility achieves higher accuracy at a system-clock frequency
of 3.23 GHz compared to 1.82 GHz. In contrast, the
iPhone 14 Pro demonstrates significantly higher feature
extraction accuracy at the lower frequency of 2.02 GHz
relative to its performance at 3.46 GHz.

We hypothesise that this discrepancy—where the
iPhone 14 Pro performs better at lower frequencies—arises
from several key factors. Specifically, the iPhone 14 Pro
benefits from significant architectural improvements brought
about by the transition from the A15 Bionic chip to the
A16 Bionic chip, which delivers higher instructions per
cycle (IPC) and improved efficiency [53]. In addition,
advanced power management and thermal design in the A16
Bionic help to mitigate thermal throttling, enabling sustained
performance without reliance on higher clock speeds [54].
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FIGURE 19. Confusion matrices of iPhone 13 and iPhone 14 Pro
multi-core models after the transfer learning process for evaluating
catastrophic forgetting, with labels referencing Table 4.

In contrast, the A15 Bionic chip of the iPhone 13 tends to rely
more on higher clock speeds for optimal performance, reflect-
ing its earlier design architecture [55]. These enhancements in
the iPhone 14 Pro not only improve energy efficiency but also
ensure robust performance across a wider range of operating
conditions, thereby explaining the observed differences. Our
future studies will further explore these variations across
diverse scenarios, aiming to uncover the fundamental factors
driving the observed performance differences.

B. COMBINED MODEL ON INDIVIDUAL-CORE DATASET

1) iPhone 13

A comparison of datasets acquired at different system-clock
frequencies from the two core clusters of the iPhone 13 indi-
cates that the dataset captured at 3.23 GHz yields superior
feature extraction accuracy within the multi-core model,
outperforming the dataset obtained at 1.82 GHz. While both
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FIGURE 20. Percentage change in accuracy before and after the transfer
learning process for iPhone 13 and iPhone 14 Pro, illustrating the impact
of catastrophic forgetting.

frequencies yield around 99% accuracy during fine-tuning,
the fine-tuning accuracy at 3.23 GHz is consistently higher
than that at 1.82 GHz. This suggests that EM traces
collected at 3.23 GHz provide more reliable forensic insights
compared to those captured at lower core frequencies.
Additionally, accuracies achieved through feature extraction
and fine-tuning from both core-clusters are further validated
using 5-fold cross-validation. Table 8 displays the accuracy
obtained in each of the 5 folds, representing the approximate
accuracy during feature extraction and fine-tuning for each
core-cluster of the iPhone 13. Therefore, investigators can
optimise their HackRF One SDR to 3.23 GHz when capturing
EM traces from smart devices, enhancing the accuracy of
forensic analysis in investigations.

TABLE 8. 5-fold cross-validation of the iPhone 13 dataset across each
core-cluster during feature extraction and fine-tuning.

Fold iPhone 13 - 3.23 GHz iPhone 13 - 1.82 GHz
Feature Fine-tuning Feature Fine-tuning
extraction extraction

1 0.7274 0.9931 0.3375 0.9897
2 0.7101 0.9945 0.3269 0.9936
3 0.7155 0.9942 0.3904 0.9944
4 0.7769 0.9947 0.3870 0.9937
5 0.8017 0.9976 0.4109 0.9943

2) iPhone 14 PRO

Fine-tuning transfer learning proves highly effective in
detecting software activities across any system-clock fre-
quency of the core-cluster, consistently delivering an accu-
racy of approximately 99.9%. Although feature extraction
can also perform well in certain instances, when consid-
ering the integrity and thoroughness required in forensic
investigations, fine-tuning emerges as the superior technique.
To validate the obtained results, 5-fold cross-validation
was performed on both core-cluster datasets during feature
extraction and fine-tuning. The results demonstrate consistent
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accuracy across each fold, as shown in Table 9. Regardless of
the core-cluster’s system-clock frequency in smart devices,
fine-tuning provides more reliable and accurate results, mak-
ing it the preferred method for investigating smart devices.

TABLE 9. 5-fold cross-validation of the iPhone 14 Pro dataset across each
core-cluster during feature extraction and fine-tuning.

Fold iPhone 14 Pro - 3.46 GHz iPhone 14 Pro - 2.02 GHz
Feature Fine-tuning Feature Fine-tuning
extraction extraction

1 0.2439 0.9862 0.9593 0.9947
2 0.2799 0.9945 0.9642 0.9936
3 0.2735 0.9941 0.9646 0.9945
4 0.3184 0.9947 0.9661 0.9985
5 0.3083 0.9946 0.9656 0.9963

C. STUDY LIMITATION

Although we hypothesise that our model is generalisable to
multi-core devices, the scope of our study is explicitly limited
to two specific iPhone models: iPhone 13 and iPhone 14 Pro.
However, we assume that the findings and methodology
are applicable to other devices with similar multi-core
architectures, particularly within the iPhone series.

VI. CONCLUSION

Dealing with multi-core devices is inevitable in modern dig-
ital forensic investigations. Investigating multi-core devices
is a critical aspect of forensic insight acquisition, particularly
when using a dedicated EM-SCA model. This study explored
how different system-clock frequencies of multi-core proces-
sors affect the performance of the EM-SCA-based forensic
insight acquisition process. To achieve this, this research
evaluated the performance of EM-SCA-based ML models
on smartphones with multi-core architectures, specifically
choosing two devices: the iPhone 13 and iPhone 14 Pro.
These smartphones were chosen due to their ability to operate
at different clock frequencies based on workload and other
parameters.

The EM traces were collected while the devices executed
ten different software activities, and a multi-core model
was developed by combining the EM data from each core.
The multi-core model then underwent a transfer learning
process using a separately collected single-core dataset.
The evaluation involved three stages of transfer learning
techniques: inductive learning, feature extraction, and fine-
tuning. The results show that most single-core datasets
collected at different times performed poorly during inductive
learning. Feature extraction provided intermediate accuracy
for each single-core dataset across different frequencies.
However, fine-tuning consistently yielded high accuracy—
approximately 99%—across all single-core datasets, regard-
less of the time of collection.

Therefore, it can be concluded that the specific core
frequency is not a significant factor when conducting EM-
SCA-based forensic insight acquisition on multi-core smart
devices specifically the iPhone 13 and iPhone 14 Pro.
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Fine-tuning demonstrated superior performance, making it
a reliable technique for the cross-device portability of EM-
SCA-based ML models. In addition, catastrophic forgetting
was tested to assess whether the original model retained
its accuracy after the transfer learning process. The results
indicated that the accuracy remained stable, confirming that
the base model maintained its integrity even after transfer
learning.

The performance of the EM-SCA-based ML models
in this research has been tested only on two specific
smartphones: the iPhone 13 and iPhone 14 Pro. To strengthen
the generalisability and robustness of the findings, it is
essential to extend this analysis to a broader range of
multi-core devices, including various smartphone brands,
operating systems, and hardware configurations. This should
include not only additional smartphone models from different
manufacturers but also IoT devices, which often utilise
multi-core architectures. Testing across diverse device types
will provide a more comprehensive understanding of the
effectiveness of EM-SCA-based forensic insight acquisition.
This will ensure its applicability across a wider range of smart
technologies while also accounting for various background
application behaviours, ultimately refining the methodology
and enhancing its robustness.
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