
Two’s Complement: Monitoring Software Control
Flow using Both Power and Electromagnetic Side

Channels
Michael Amar*

Ben-Gurion University of the Negev
Beer Sheva, Israel

amarmic@post.bgu.ac.il

Lojenaa Navanesan*

Ben-Gurion University of the Negev
Beer Sheva, Israel
lojenaa@bgu.ac.il

Asanka Sayakkara
University of Colombo School of Computing

Colombo, Sri Lanka
asa@ucsc.cmb.ac.lk

Yossi Oren
Ben-Gurion University of the Negev

Beer Sheva, Israel
yos@bgu.ac.il

Abstract—Embedded devices leak information about their
inner activity through power and EM side channels. A defender
who measures this leakage can thus use it to monitor the
device and ensure its control-flow integrity. Previous works
have investigated the use of power and EM side channels for
control-flow monitoring, but they have only used a single side
channel at a time. In this paper, we propose an approach
that integrates both power and EM side channels to detect
deviations from the device’s normal behavior. Our model takes
inspiration from multimodal machine learning used in image and
speech recognition, and uses an intermediate integration design
which passes multiple input modalities in parallel through a
single self-attention transformer network. We evaluate our model
on an off-the-shelf device at multiple noise levels, and show
that it outperforms models that use only a single channel as
input. In particular, we show how the multimodal approach can
improve trace classification and anomaly detection accuracies by
up to 18% and 11%, respectively, compared to power/EM-only
approaches. Additionally, we show that our approach is superior
over the early and late integration approaches currently used in
multimodal side channel analysis work. We release our machine-
learning architecture, including trained models based on real-
world data, as an open-source repository. Our work highlights
how advances in the wider field of machine learning can be used
to improve the security of embedded systems.

Index Terms—Side channel analysis, Malware detection, Em-
bedded devices, Deep learning, Multi-model architecture

I. INTRODUCTION

Control-flow monitoring is a defensive technique that aims
to ensure that a system’s real-time execution pattern conforms
to a known control-flow graph (CFG) [15]. Cyber-physical
systems (CPS), which sense and interact with the environment,
are natural candidates for control-flow monitoring defenses, as
they tend to execute a small amount of code in a closed loop,

This research is supported by the U.S.-Israel Energy Center managed
by the Israel-U.S. Binational Industrial Research and Development(BIRD)
Foundation.

*Both authors are considered co-first authors

making their CFGs relatively easy to determine. While control-
flow monitoring was originally carried out by specialized hard-
ware or software components which directly interact with the
CPU, recent work has shown how both power and electromag-
netic (EM) side channels can be used to implement relatively
non-invasive control-flow monitoring defenses [12, 7, 13, 9].
The basic approach employed by these works is to collect
a large amount of power/EM traces while the system is in
a benign state, and use the traces to train a machine learning
(ML) classifier. Then, in the online phase, this classifier is used
to determine whether the current power/EM trace conforms to
the correct control flow of the program. Since the power and
EM traces are collected by external hardware, these defenses
do not require any source code modifications to the device
under test (DUT), and cannot be trivially disabled by malware
which overrides the control-flow monitoring logic. Since the
process of adding a power or EM probe to a DUT is relatively
simple, a defender can attempt add both power and EM probes
to the DUT simultaneously, in an attempt to produce a more
effective defense. Unfortunately, state-of-the-art side channel-
based control-flow monitoring approaches are limited to using
only a single side channel, a limitation we address in this
work.

Several works have explored the simultaneous use of mul-
tiple side channels for cryptanalytic attacks [18, 3, 17, 4].
These works have shown that using multiple side channels can
significantly improve the effectiveness of cryptanalytic attacks.
Unfortunately, their approaches are not directly applicable to
control-flow monitoring. In particular, most of these works
apply an “early integration” model to the multiple side-channel
traces [16], combining them into a composite signal before
entering the ML pipeline. As we show in this paper, this
approach is suboptimal for the control-flow monitoring use
case.

In this work we describe a control-flow monitor based
around the concept of “intermediate integration”, a method

FreeText
Preprint Version



which is currently being used to great success to process
multimodal data in the fields of natural language processing
(NLP) and computer vision. In an intermediate integration
model, multiple input modalities are passed in parallel through
a single self-attention transformer network [20]. As we show in
this work, the intermediate integration approach is well-suited
for the control-flow monitoring use case. More specifically,
we introduce a multimodal control-flow monitor based on
this approach, and show that it outperforms both of the
single-modality sensors it is based on, as well as early- or
late-integration multimodal approaches. More specifically, the
contributions of this work are as follows:

• We propose a multimodal control-flow monitoring de-
fense that uses a self-attention transformer network to
combine EM and power consumption traces through
intermediate integration (Section III-D).

• We evaluate our approach on an off-the-shelf device and
show that our multimodal approach outperforms single-
modality classifiers, providing an increased accuracy rate
of up to 18% compared to the EM/Power only approach,
depending on the system noise (Section IV-A).

• We compare our intermediate integration approach to
early- and late-integration multimodal approaches, and
show that our method has better performance (Sec-
tion IV-B).

• We release our machine-learning architecture, including
trained models based on real-world data, as an open-
source repository [2].

Our work highlights, yet again, how advances in the wider
field of machine learning can be used to improve the security
of embedded systems.

A. Threat Model

This work assumes a DUT that is running a closed-loop
code. The DUT may consist of multiple interfaces for network
communication as well as for controlling peripherals. The
network interfaces may include either or both wired and
wireless communication.

We assume that the defender has attached both EM and
power probes to the field-deployed DUT, and is able to
estimate the signal-to-noise ratio (SNR) of the data from
each probe while the system is in operation. Furthermore,
the defender of the system has access to an identical copy
of DUT, which can be used to profile the DUT and create
a baseline model of its behaviour in a safe state. Comparing
to this baseline model, the defender can actively monitor the
field-deployed DUT in real time using data being acquired
through EM and power probes.

We assume that an attacker may have access to the field-
deployed DUT through its network and peripheral interfaces.
The objective of the attacker is to modify the system’s be-
haviour in a malicious way without being detected by the
defender. Consequently, it is not possible for the attacker to
physically damage or replace EM and power probes mounted
on the field-deployed DUT for monitoring purpose since it
would be noticeable to the defender.

II. RELATED WORK

A. Control-Flow Monitoring Using Side Channels

The idea of using side-channel for detecting malicious code
execution was first introduced by Aguayo Gonzalez and Reed
in 2010 for the power domain [6], and by Stone and Temple for
the EM domain [19]. These early works assumed a single valid
“golden execution” exists for the program, an assumption that
does not hold if the program has multiple code paths. Liu et al.
later showed how power signals can be used to monitor this
more general class of programs [12]. They defined each basic
block of the program CFG as a state, and used a Hidden
Markov Model (HMM) to infer the most probable sequence
of states, where the power consumption signals served as the
observations of the HMM. An improved Viterbi algorithm was
used to infer the most probable sequence of states. Using
their method, the recognized instruction sequence accuracy
was reported to be 97%. Han et al. proposed a control-flow
monitor based on the EM side channel [7]. Their passive EM-
based monitor was designed to detect the currently-executing
control flow of a commercial PLC. They did so by creating
a set of test cases for each control flow by using symbolic
execution, generating input vectors that will cause the program
to follow a desired path, and finally recording the EM radiation
of every feasible execution path of the PLC program. To deal
with the low signal to noise Ratio (SNR) of their signals,
they applied techniques from the speech recognition domain
and used the frequency representation of the signals. Finally,
they trained an LSTM based network to classify signal to the
correct control flow and declared an anomaly in case of a low
confidence of the model for all control flows. In this paper we
adapt their anomaly detection technique to the multi-modal
setting, considering only the time-domain signals, rather than
the frequency-domain signals.

Nazari et al. [13] identified spikes in the frequency spectrum
of the received EM signal which conforms with periodic events
such as loops and functions execution. Then, they used statisti-
cal tests to decide whether the code is malicious or benign. The
preprocessing stage included instrumentation before and after
every loop to help identify tested code regions. Then, their
monitor ran the application multiple times with different inputs
to achieve better coverage. During the monitoring stage the
original program is executed, and the monitor identifies peaks
in the EM spectrum and compares them to the peaks learned
in the preprocessing stage. Finally, they used a nonparameteric
test, which does not assume distribution type of the data, to
compute the probability the execution belongs to some code
region.

B. Multimodal Learning

Multimodal learning methods can be broadly defined as
machine learning models that fuse together multiple input
sources that measure different aspects of the same event [16].

Research in multimodal fusion has applications in several
fields, from natural language processing to image processing,
and computer vision. Snoek et al. introduce a taxonomy



of fusion schemes, based on the point in the analysis in
which the data from multiple sources is combined [16]. Early
integration is defined by Snoek et al. as a ”Fusion scheme
that integrates unimodal features before learning concepts”.
This integration is usually done on raw data, or on features
directly derived from the data. Late integration is performed by
processing each input separately, passing each one through a
separate machine learning model, and ultimately aggregating
the outputs of the models, or as more formally defined by
Snoek et al. [16] a ”Fusion scheme that first reduces unimodal
features to separately learned concept scores, then these scores
are integrated to learn concepts”. Between these two extremes
are intermediate integration schemes, for example the scheme
of Ngiam et al. [14], where an intermediate representation of
the data is learned for each modality, and then the representa-
tions are combined and further processed by a single machine
learning model.

Transformer networks are a deep learning architecture intro-
duced by Vaswani et al., which was shown to work well in the
multimodal learning setting [20]. This emerging architecture
has proved itself in the fields of natural language process-
ing [21] and computer vision [11], and has a major role in
the generative AI revolution. Transformer networks achieve
their effectiveness by using a self-attention mechanism which
enables the deep neural network to weigh the significance of
different input elements relative to each other. For example, in
the context of NLP, the attention model first weighs the impor-
tance of each word compared to other words in the sequence,
then the importance of pairs of words compared to pairs of
words, then pairs of pairs, and so on [5]. One of the main
benefits of self-attention is that it is applied to the entire se-
quence simultaneously, making it much faster than traditional
RNNs. Another factor that assists transformers in the field of
NLP is their ability to preserve long-term dependencies. This
proves to be valuable also in the side channel use case, given
that power consumption (and EM signal as consequence) also
depends on the previously-executed instructions, rather than
the current executed instruction solely [12].

C. Multimodal Cryptanalytic Side-Channel Attacks

One of the early works that explored the idea of using
several channels to improve the effectiveness of a side channel
attack is Agrawal et al. [3]. In their work, Agrawal et al.
demonstrate how an adversary interested in the internal state
of a device, such as the LSB of the data bus during LOAD
instruction, can use multiple channels to reduce the error rate
of the attack. First, the attacker invokes the target instruction
multiple times from any relevant state while monitoring the
EM and power consumption of the device. Then, the attacker
uses maximum likelihood estimation to find the most prob-
able state of the device. They show that by concatenating
the EM and power signals, the error rate of the attack is
reduced by up to 13.5% compared to using a single channel.
Standaert and Archambeau [18] continue the approach of
Agrawal et al. [3] and show how the concatenation of the
EM and power signals reduces the entropy when the attacker

performs a template attack for key extraction. Concatenating
the signals, however, results in longer traces and increases the
computational resources needed. Souissi et al. [17] performed
a theoretical analysis of the multimodal task, and proposed to
combine the Pearson and Spearman correlation coefficients of
the measurements. They concatenated two EM traces provided
by probes located in different positions on the device, and used
CPA to attack the concatenated trace by computing the Pearson
correlation coefficient of the key hypothesis for each trace out
of the two. Then, the combination was done by summing up
the calculated coefficients. This method showed a gain of up
to 44.86% in the number of traces needed for the attack. Most
recently, Bai et al. [4] showed how an attacker can use both the
EM and power side channels to extract AES sub-keys in a real-
time setting. They use a linear combination of the coefficients
of the features for each trace type to create a combined trace.
The combined trace is then fed into an SVM classifier than
predicts the target bit. This method requires on average 58%
less traces compared to the power only method, and 40% less
compared to EM only method in offline settings. Applying
the taxonomy of Snoek et al. to the above works, we see that
most of them follow an early integration approach, where the
signals are combined before the ML model.

III. METHODOLOGY

A. Overview

In this work, our general approach is to capture power and
EM traces from a real device, use them to train both unimodal
(only power, or only EM) and multimodal (both power and
EM) machine learning models, and then evaluate the perfor-
mance of the models on both control-flow classification and
anomaly detection tasks. We compare the three approaches for
multimodal fusion (early, intermediate, and late), to discover
which approach is optimal for our use case. To examine the
robustness of our models, we artificially add a controlled
amount of noise to the traces, and evaluate the performance
of the models on these increasingly-noisy traces.

B. Experimental Setup

Our device under test was the Nordic nRF52833 DK, a
microcontroller board equipped with an ARM cortex M4
processor running at 64 MHz. This board comes with built-in
current measurement pins, making it possible to profile power
consumption with no hardware modifications. The device was
powered a by Keysight B2962A low-noise power source. We
measured voltage drops across a 10 Ω resistor using a Keysight
MSOS604A oscilloscope at a sampling rate of 1 GSa/sec.
To measure EM signals, we used a Langer LF-U5 probe
connected through a Langer PA 303 amplifier to a Tektronix
RSA306 Spectrum Analyzer at a center frequency of 975 KHz
and a sampling rate of 56 MSa/sec. The probe’s location above
the DUT and the spectrum analyzer’s frequency parameters
were identified through a cartography process which is de-
scribed in our repository [2]. Figure 1 shows the tested device
and the experimental environment.



EM Probe

Power Probes

nRF SoC

Ext’ power supply

10Ω resistor

Current measurement pins

Fig. 1: The experimental environment

The software running on the DUT was the Siemens Traffic
Collision Avoidance System (TCAS) [10]. Han et al. recently
analyzed TCAS using a symbolic execution framework, pro-
ducing a set of input vectors covering the entire control-flow
graph, which we also use in our work [8]. We modified the
program so that it set up a rising edge signal on a GPIO pin
at the program’s start and a falling edge signal at its end.
The GPIO pins were connected to the oscilloscope and the
spectrum analyzer, serving as the trigger.

Machine learning training was performed on an NVIDIA
GeForce GTX 1080 cluster with 57 GPUs, orchestrated
through the Slurm job scheduling system. The nodes were
running Linux Centos with Python version 3.8, TensorFlow
version 2.6 and CUDA version 11.1.

C. Data Collection and Processing

The TCAS program receives an input vector which deter-
mines the path of execution through the control-flow graph.
As documented by Han et al. [8], there exists a set of 24 input
vectors that covers all possible paths through the program. We
ran the program with each one of these input vectors 1000

times, collecting both power and EM traces, resulting in a
total of 48,000 benign traces.

We simulated a code injection attack using three different
attack scenarios, illustrating different amounts of injected
malicious code. In the first attack scenario, we manually
inserted 5 NOP instructions into the binary. In the second
attack scenario, we inserted 10 NOP instructions, and in the
third attack scenario, we inserted code that transmits a single
byte through the UART pins of our test device. Each one of
these three variants was applied to the 24 input vectors.

Since each flow of the program executes a different set of
instructions, there might be differences among the execution
time of the different flows. Those differences will be expressed
in the length of the captured signals, and might cause the
model to learn the length of the captured signal rather than the
signal itself. To overcome this issue, and other shape mismatch
issues during the training process, we resized each signal to
match the size of the longest signal in the training set using
linear interpolation and decimation.

We post-processed the signals and normalized them to a
mean of 0 and a standard deviation of 1, and split the benign
traces into training and testing groups using a 80/20 split.
To evaluate the performance of our classifier under noisy
conditions, we artificially generated 20 additional datasets by
adding a varying amount of noise to the normalized signals,
with noise level (i.e. standard deviation) σ varying from 1 to
20. Note that the standard deviation of the signals is 1 since
we applied normalization.

D. Machine Learning

Our machine learning classifier receives as input either a
power trace, an EM trace, or both power and EM traces
simultaneously, and outputs a confidence vector matching the
trace to each of the 24 possible control flows of the program.
Anomaly is declared in case the classifiers’ confidence in all
classes (control flows) is lower than a predefined threshold.
This method which was also presented by Han et al. [7] gives
a single model the ability to classify signals to the correct flow
and monitor code execution, while also serving as an anomaly
detector. It also does not require any anomalous samples for
the training process.

To evaluate the model’s ability to classify a given trace to
the correct control flow, we feed the model with the benign
samples, and measure its accuracy. We tested this anomaly
detector against the malicious trace dataset, and measured the
area under the ROC curve (AUC) of the classifier as we varied
the threshold value.

1) Unimodal Classifiers: After collecting the training sam-
ples, we trained two independent transformer-based classifiers.
Each classifier was trained on a single modality, either EM
or power signals. The architecture of our models is based
the Keras transformer model [1]. It consists of one encoder
block, composed of a multi-head attention layer followed by
dropout and normalization layers, and a feed forward part that
is composed of 1-dimensional convolutional layer followed by
dropout and normalization layers. Finally, the output of the



feed-forward part is residually connected to its input. Next,
the output of the block is fed into a global average pooling
layer, followed by a dense layer with sigmoid activation for
classification. We also used an L2 regularizer on the output
layer with a regularization factor of 0.0005. The architecture
of the models is identical between the modalities, and it is
trained with cross-entropy loss and Adam optimizer for 10
epochs and a batch size of 8. We explore our machine learning
parameter choices further in Section IV-C. We repeated the
training process 21 times, accounting for the different noise
levels we used in our experiments. We denote the EM based
model that was trained with a noise level of e as EMe, and
the power based model that was trained with a noise level of
p as Powerp.

2) Multimodal Classifiers: The multimodal classifier ac-
cepts both EM and power signals as input. We evaluated
three possible multimodal fusion approaches: early integration,
intermediate integration, and late integration.

To implement the early integration approach, we concate-
nated the signals before feeding them to a single model, as
in Standaert and Archambeau [18], Agrawal et al. [3]. To
implement the late integration approach, we applied the signal-
specific models as trained previously, and then used the mean
of their outputs as the output of the integrated model, noting
that since we used the sigmoid layer as the output layer, the
mean value of the outputs is still a probability for each class.
We now describe the intermediate integration approach, which
is the main focus of this work.

Our model follows the general structure described in Fig. 2.
The architecture of each stream is identical to the architecture
of the signal-specific models until it reaches the output layer.
At this point, instead of feeding the embeddings of each
modality to the output layer, we fuse them using a cross
attention layer, then feed the fused embeddings to the output
layer. We note that since the noise levels of the power and EM
traces are not necessarily identical, there is a quadratic number
of possible noise level combinations for the multimodal model,
resulting in 441 models trained in total. We denote the
multimodal model that was trained with EM noise level of
e and power noise level of p as MMe,p.

IV. RESULTS

A. Proposed Multimodal Classifier

As described in Section IV-B, the intermediate integration
approach is the main focus of this work. In Fig. 3, we compare
the performance of this type of multimodal model to the
performance of the unimodal EM and power based models for
the classification task at different noise levels. As mentioned
in Section III-C, there is a quadratic number of possible noise
level combinations for the multimodal model. For efficiency of
presentation, we plot cases where the noise level of both EM
and power samples is identical, i.e., MMi,i for i ∈ 0 · · · 20.
Additional results for all noise combinations are available in
the artifact repository [2].

As the figure indicates, the multimodal model outperforms
the single-channel models at all noise levels. It is also worth

noting that the EM-only model outperforms the power-only
model when noise levels are low, while as the noise level
increases the power model becomes superior over the EM
model. Additionally, the power model’s accuracy drops at a
slower rate compared to the EM model as the noise level
increases.

To better understand the benefit of the multimodal model
across all possible noise level combinations, we define the
Accuracy Gain and AUC Gain as the difference between the
performance of the multimodal model to that of the best of
the two single-modality models at the same noise levels in the
classification and anomaly detection tasks, respectively. For
example, the accuracy gain at an EM noise level of 20 and a
power noise level of 10 is defined as Gain20,10 = MM20,10−
max(EM20, Power10)

Fig. 4a shows the accuracy gain, and Fig. 4b shows the
AUC gain, for our proposed multimodal classifier. As the
figure shows, at low noise levels the multimodal model has no
significant advantage over the unimodal models, possibly due
to the high accuracy of the unimodal classifier at these noise
levels. As the noise level increases, however, the multimodal
model shows a significant improvement in both accuracy
and AUC of up to 18% and 11%, respectively, over the
corresponding unimodal models. We also note that when the
noise values are low there is a possible minor drop in accuracy
and AUC of up to 2% and 4%, respectively. Overall, Fig. 4
shows that our proposed approach improves both the accuracy
and the AUC of the models in most realistic settings.

B. Comparison With Early- and Late-Integration Multimodal
Classifier

While we proposed an intermediate integration approach in
this paper, other approaches exist as well. For example, both
Standaert and Archambeau [18] and Agrawal et al. [3] used
the early integration approach and concatenated the signals
before using them for classification. We compare our proposed
approach to both early and late integration approaches at
different noise levels in Fig. 5.

As the figure shows, in the absence of noise both the late and
intermediate integration models perform similarly, and better
than the early integration model. As the noise level increases,
however, the intermediate integration model significantly out-
performs both early and late integration models. Comparing
these results with the results for unimodal models shown in
Fig. 3, we observe that the performance of the intermediate
integration is strictly superior to the performance of the uni-
modal models, the performance of the early integration model
is similar to that of the power-only model. This emphasizes
the advantage of our proposed integration technique over the
other approaches.

C. Choosing the Output Layer

As previously explained, our model serves two purposes, a
classifier and an anomaly detector. When creating a multiclass
deep-learning classifier, a typical approach is to use a softmax
layer as the final activation function. Since our model serves



transformer

transformer

attention Output layer

Power sample

EM sample

Power probe

EM probe

Test device

Fig. 2: The architecture of the suggested bimodal fusion transformer model

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Noise Level σ

A
cc

ur
ac

y

Bimodal
Power Only
EM Only

Fig. 3: Accuracy vs. noise of multimodal and single-modality
models

an additional purpose, we need to consider the effect of the
output layer on anomaly detection.

The softmax layer which is used to predict probabilities with
categorical distributions is defined as:

softmax(x)i =
exp(xi)∑n
j=1 exp(xj)

(1)

One attribute of this function is that it outputs a distribution
function, meaning that the sum of the output vector is always
1. As a consequence, an increase in the confidence of one class
will necessarily result a decrease in another. This attribute is
not wanted in our use case for detecting anomalies, since a
low confidence of the model in all classes is actually used
to detect anomalies, and is thus a desirable outcome. Instead
of using the classic softmax activation, we used the sigmoid
function which is more typically used for binary classification
problems. The sigmoid function is defined as:

sigmoid(x) =
1

1 + e−x
(2)

Each value in the output vector is independent of the other
values, and can be interpreted as the probability of the sample

TABLE I: Comparing the output layer activation function

sigmoid softmax softplus
Accuracy 0.883 0.903 0.897
AUC 0.990 0.929 0.969

to belong to the corresponding class. Yet, the sum of the output
vector is not necessarily 1, and the output vector is not neces-
sarily a distribution function. Table I shows the importance of
choosing the right output layer for our task. We compared the
accuracy and the AUC of the models when using several output
functions. Namely, softmax, sigmoid, and softplus activations.
The model was trained for the noiseless scenario (i.e. MM0,0).
The table shows that, while the accuracy of the model is not
greatly affected by the choice of the output layer, the AUC is
significantly affected by this choice. The AUC of the model
using the sigmoid activation reaches 99%, which is 6.1%
higher than when using the softmax activation. Surprisingly,
the softplus activation, which is a smooth version of relu and
more typically used in hidden layers, outperforms the softmax
activation in AUC as well. However, since the output values
of the softplus function do not represent a probability for the
class we used the sigmoid activation for more interpretable
results.

V. DISCUSSION

A. Overhead analysis

Using a ML pipeline with two modalities may increase the
inference time of the model, leading to anomaly detection
solution that is not acceptable in time-critical environments.
The transformer network proposed in this paper better fits
the requirements of a real-time environment than previously
proposed RNN models [7] as there is no recurrent leading
to faster inference. As deep learning models are a natural
choice for signal classification, classic ML models can also
be considered as they tend to be faster, however, they require
a feature engineering step. To estimate the overhead of our
multimodal approach, we measured the inference time of the
multimodal model and compared it with the single modality
models. We also implemented a RandomForest (RF) model,



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Power noise sigma

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

E
m

n
o
is
e
s
ig
m
a

-0.01 0.01 0.01 0.00 0.01 -0.01 -0.00 0.01 0.00 -0.00 0.00 0.00 0.01 -0.00 0.01 0.00 -0.00 -0.00 0.00 0.00 0.00

0.01 0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.01 -0.00 -0.01 -0.00 -0.01 -0.01 -0.00 -0.00 -0.00 -0.00 -0.01 -0.00 -0.00

0.04 0.04 0.03 0.03 0.03 0.01 0.01 0.01 0.02 0.01 0.00 -0.00 -0.00 -0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.02 -0.01

0.04 0.05 0.06 0.07 0.09 0.10 0.09 0.08 0.07 0.06 0.06 0.05 0.04 0.03 0.03 0.02 0.01 -0.01 -0.01 -0.01 -0.02

0.03 0.03 0.04 0.05 0.06 0.08 0.11 0.13 0.16 0.15 0.14 0.11 0.11 0.09 0.08 0.07 0.06 0.02 0.02 0.02 0.00

0.02 0.03 0.03 0.04 0.05 0.06 0.08 0.09 0.12 0.14 0.16 0.18 0.16 0.14 0.12 0.11 0.10 0.09 0.06 0.01 0.01

0.01 0.01 0.02 0.02 0.04 0.03 0.06 0.06 0.09 0.09 0.11 0.12 0.16 0.15 0.17 0.15 0.13 0.12 0.09 0.05 0.04

-0.00 0.01 0.02 0.01 0.02 0.02 0.04 0.03 0.05 0.06 0.09 0.09 0.11 0.10 0.12 0.13 0.15 0.14 0.10 0.09 0.04

0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.02 0.04 0.05 0.06 0.06 0.08 0.08 0.09 0.12 0.12 0.12 0.10 0.11 0.08

-0.00 0.01 -0.00 0.01 0.01 0.01 0.02 0.00 0.02 0.03 0.03 0.04 0.05 0.04 0.06 0.09 0.08 0.09 0.08 0.12 0.11

-0.01 0.00 0.00 0.00 -0.01 0.00 -0.00 -0.01 0.00 0.02 0.02 0.02 0.03 0.03 0.03 0.06 0.06 0.07 0.05 0.10 0.09

-0.01 -0.00 0.00 -0.00 -0.00 -0.00 0.01 -0.01 -0.01 0.01 0.01 0.00 0.02 0.00 0.01 0.03 0.04 0.05 0.03 0.08 0.08

-0.00 -0.00 -0.00 -0.01 -0.00 0.00 -0.00 -0.01 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.04 0.03 0.03 0.02 0.07 0.04

-0.00 0.00 -0.00 -0.01 -0.00 -0.01 0.00 -0.01 0.00 0.01 -0.00 -0.00 0.01 -0.00 -0.01 0.02 0.03 0.02 0.01 0.05 0.04

-0.01 -0.00 -0.00 0.00 -0.01 0.01 -0.00 -0.01 0.00 -0.00 -0.01 -0.01 0.00 -0.01 0.00 0.02 0.02 0.02 0.00 0.04 0.03

-0.00 0.00 -0.00 0.00 -0.00 -0.01 -0.00 -0.00 0.00 -0.00 -0.01 -0.01 0.00 -0.01 -0.01 0.01 0.02 0.00 -0.00 0.03 0.03

-0.01 -0.00 -0.00 -0.00 -0.00 -0.01 -0.00 -0.01 0.01 0.00 -0.00 -0.01 0.00 -0.01 0.00 0.01 0.01 0.01 -0.00 0.03 0.00

-0.00 0.00 0.00 0.00 -0.01 -0.00 0.00 -0.00 0.01 -0.01 -0.01 -0.01 0.00 -0.01 -0.00 0.00 0.01 -0.00 -0.01 0.02 0.03

-0.01 -0.01 -0.00 0.00 -0.00 -0.01 -0.00 -0.02 -0.00 -0.00 -0.00 0.00 0.01 -0.02 -0.00 0.02 0.01 -0.00 -0.01 0.03 0.01

-0.01 0.00 -0.00 -0.00 -0.01 0.00 0.01 -0.01 -0.01 0.00 -0.01 -0.01 -0.00 -0.01 -0.01 0.00 0.01 -0.00 -0.01 0.03 0.02

-0.01 0.00 -0.00 -0.00 -0.01 -0.00 -0.00 -0.01 0.00 0.00 -0.01 -0.01 -0.00 -0.02 -0.01 0.01 0.01 0.01 -0.00 0.03 0.02

-0.02

0.00

0.18

(a) Accuracy Gain

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Power noise sigma

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

E
m

n
o
is
e
s
ig
m
a

0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 -0.00 0.00 -0.00 -0.00 -0.01 -0.00 -0.00 0.00 0.00 -0.00 -0.00 -0.00 -0.01 -0.00

-0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

-0.02 -0.01 -0.02 -0.00 -0.02 -0.00 -0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 -0.00 -0.00 0.00

0.01 0.01 0.01 0.01 0.03 0.03 0.04 0.03 0.04 0.04 0.03 0.03 0.02 0.02 0.02 0.01 0.01 -0.01 -0.01 -0.00 -0.01

0.02 0.04 0.04 0.01 0.05 0.06 0.08 0.09 0.08 0.08 0.07 0.07 0.06 0.06 0.05 0.03 0.04 0.01 0.01 0.01 0.00

0.02 0.02 0.01 0.01 0.02 0.03 0.04 0.06 0.07 0.09 0.10 0.11 0.11 0.09 0.08 0.06 0.06 0.05 0.02 0.00 -0.00

-0.02 0.02 0.00 -0.01 0.01 0.02 0.03 0.04 0.05 0.07 0.07 0.09 0.08 0.09 0.11 0.09 0.09 0.07 0.05 0.01 0.01

-0.01 0.01 0.02 -0.01 0.00 0.01 0.01 0.02 0.02 0.04 0.05 0.07 0.06 0.08 0.08 0.08 0.08 0.08 0.06 0.05 -0.01

-0.00 0.01 0.01 -0.00 -0.01 0.00 0.00 0.01 0.01 0.02 0.02 0.04 0.03 0.05 0.06 0.06 0.06 0.05 0.04 0.06 0.04

-0.01 0.02 -0.00 -0.01 -0.00 -0.01 -0.00 0.01 0.01 0.01 0.02 0.04 0.03 0.03 0.03 0.04 0.04 0.02 0.03 0.05 0.02

-0.01 0.01 0.01 -0.01 0.01 -0.00 -0.01 0.00 -0.00 0.01 0.01 0.02 0.02 0.03 0.03 0.03 0.04 0.02 0.02 0.05 -0.01

-0.03 0.01 -0.00 -0.00 0.00 -0.01 -0.00 0.00 -0.01 -0.00 0.01 0.02 0.00 0.02 0.02 0.02 0.02 0.02 0.01 0.04 0.01

-0.01 0.02 0.00 0.01 0.00 0.00 -0.01 -0.00 -0.01 0.00 -0.00 0.01 0.00 0.01 0.01 0.02 0.01 0.00 -0.00 0.03 0.01

-0.01 0.03 0.03 -0.01 -0.01 -0.00 -0.01 0.00 -0.01 0.00 -0.01 0.01 -0.01 0.00 0.01 0.02 0.02 0.01 0.00 0.04 -0.04

0.01 0.02 0.01 -0.01 0.00 0.00 -0.01 -0.00 -0.01 0.00 0.00 -0.00 -0.00 0.01 0.00 0.01 0.02 0.00 -0.00 0.04 -0.01

0.01 0.01 0.01 -0.01 -0.00 -0.00 -0.00 -0.00 -0.01 -0.00 -0.01 0.01 0.00 0.00 0.00 0.01 0.02 0.00 -0.00 0.02 -0.00

-0.01 0.01 0.00 -0.01 -0.00 -0.01 -0.01 0.01 -0.00 0.00 -0.01 0.00 -0.01 0.01 -0.01 0.01 0.01 -0.01 -0.00 0.02 -0.02

-0.00 0.02 0.01 0.00 -0.00 -0.00 -0.00 0.00 -0.01 0.00 -0.01 0.01 0.00 0.00 0.00 0.01 0.00 -0.00 -0.00 0.03 -0.01

-0.03 0.01 0.00 -0.01 -0.00 0.00 0.00 0.01 -0.01 -0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00 0.02 -0.00 -0.01 0.02 -0.03

-0.01 0.02 0.02 -0.01 -0.00 0.00 -0.00 0.00 -0.01 -0.00 -0.00 0.01 -0.00 0.01 0.00 0.00 -0.00 0.00 0.01 0.03 -0.01

-0.01 0.01 0.01 -0.01 -0.00 0.00 -0.01 0.01 -0.01 -0.00 0.00 0.01 -0.01 0.01 0.00 0.00 0.01 0.00 -0.01 0.02 0.00

-0.04

0.00

0.11

(b) AUC Gain

Fig. 4: Performance gains of the multimodal model compared
to the single-modality models

and three LSTM networks - one for each modality and a
multimodal model with an LSTM backbone, We followed [7]
to implement the LSTM architecture. For the RandomForest
classifier we extracted classic features from the signals like the
average power, maximum power, number of peaks, standard
deviation, skewness, kurthosis, and percentiles. Table II shows
the results of this experiment, it shows the mean inference
time of a single sample for each one of the models, and the
accuracy the models reached. Note that models of the same
type have different inference time based on the modality the
model was trained on. This is due to the significantly higher
sampling rate that the power samples were measured, leading
to longer samples than the EM samples. By comparing the
transformer and LSTM models that were trained on the same
modality (e.g. Transofmer(EM) vs LSTM(EM)), we can learn
that the transformer based models are faster, more accurate and
their accuracy rate drops slower as the noise level increase.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Noise Level σ

A
cc

ur
ac

y

Intermediate integration
Late integration
Early integration

Fig. 5: Accuracy vs. noise of different integration approaches

TABLE II: Comparing the inference time and accuracy of the
various models

Inference(ms) Accuracy
@σ = 0

Accuracy
@σ = 5

Transformer(EM) 4.04±0.60 0.896 0.442
Transformer(Power) 4.58±0.55 0.798 0.697
Transformer(Multimodal) 5.15±0.77 0.883 0.759
LSTM(EM) 4.89±0.65 0.846 0.202
LSTM(Power) 7.41±0.57 0.678 0.380
LSTM(Multimodal) 8.09±0.65 0.875 0.610
RF (EM) 0.8±0.008 0.423 0.041
RF (Power) 2.4±0.006 0.211 0.20
RF (Multimodal) 3.23±0.006 0.387 0.22

Furthermore, on average the slowest transformer model -
the multimodal model, is only 5% slower than the fastest
LSTM based model. Alternatively, the RF models suggest
a significantly faster models, however they are much less
accurate than the deep learning models, probably due to the
limited amount of knowledge that can be extracted from the
suggested features.

B. Limitations

The primary limitation of our work is the fundamental
question of whether side channels are the right tool to be used
for monitoring the control flow of a device. As recently shown
by Han et al., an adversary capable of accessing the classifier’s
confidence score can use an iterative search process to craft
malware which is both semantically correct and difficult to
detect by a power-based side channel monitor[8]. We hypothe-
size that the higher dimensionality of the multimodal detector
would make it more difficult to evade than single-modality
detectors, but this remains to be tested. Another vulnerability
in the defense is its reliance on external power and EM
sensors. An attacker with physical access to the devices can
potentially tamper with the sensors, an act which might be
simpler than tampering with the device itself, and thus either
disable protection (by replaying traces of valid executions,
irrespective of what the device is actually doing), or otherwise
expose the device to potentially harmful false positives.



Additionally, in this paper we used random Gaussian noise
as our noise source for both EM and power traces, we note
that in reality the source of the noise may be different for
each channel. Moreover, in real-life scenarios the noise levels
may be higher than presented in this paper, this remains to be
explored.

C. Future Work

The most obvious direction for future work is to test
the proposed approach on additional real devices, and in
particular to refine the noise profile of badly-positioned sensors
beyond the white Gaussian noise we used in this work.
The multimodal approach we proposed is not limited to a
pair of EM and power channels. It would be interesting to
evaluate it with arbitrary combinations of power channels, EM
channels, or even more exotic side channels such as acoustic
or thermal. In addition, since the traces are only integrated
after feature extraction, our approach may be more resilient
to misalignment between traces, both within a single modality
and both between modalities. It would be interesting to test
this robustness in future work. It would also be interesting to
consider how multimodal cryptanalytic side-channel attacks
would benefit from the intermediate integration approach.

Finally, while self-attention has been shown to be effective
in this problem domain, it is not the only possible approach
to multimodal integration. It would be interesting to find other
hyperparameter combinations, or other architectures entirely,
which are more effective than the one we proposed.

D. Conclusion

In this paper we presented a passive approach to detect
control-flow deviations during an attack. We leveraged a
multimodal approach that used both power consumption and
EM side channels to monitor the control flow of a device.
Our proposed approach is superior to approaches that only
use a single type of signal, improving the accuracy by up
to 18% and the AUC by up to 11%. We also compare our
models’ performance to traditional RNN, and show how it is
both faster and more accurate. Finally, Our results show the
benefit of using concepts from the field of multimodal learning
to improve side-channel defenses.

REFERENCES

[1] Timeseries classification with a transformer model.
URL https://keras.io/examples/timeseries/timeseries
classification transformer.

[2] Two’s complement artifact repository. URL https://
github.com/Michael-amar/Twos complement.git.

[3] Dakshi Agrawal, Josyula R. Rao, and Pankaj Rohatgi.
Multi-channel attacks. In CHES, volume 2779 of Lecture
Notes in Computer Science, pages 2–16. Springer, 2003.

[4] Yunkai Bai, Jungmin Park, Mark M. Tehranipoor, and
Domenic Forte. Dual channel em/power attack using
mutual information and its real-time implementation. In
HOST, pages 133–143. IEEE, 2023.

[5] Benyamin Ghojogh and Ali Ghodsi. Attention mech-
anism, transformers, bert, and gpt: tutorial and survey.
2020.

[6] Carlos R Aguayo Gonzalez and Jeffrey H Reed. De-
tecting unauthorized software execution in sdr us-
ing power fingerprinting. In 2010-MILCOM 2010
MILITARY COMMUNICATIONS CONFERENCE, pages
2211–2216. IEEE, 2010.

[7] Yi Han, Sriharsha Etigowni, Hua Liu, Saman A. Zonouz,
and Athina P. Petropulu. Watch me, but don’t touch me!
contactless control flow monitoring via electromagnetic
emanations. In CCS, pages 1095–1108. ACM, 2017.

[8] Yi Han, Matthew Chan, Zahra Aref, Nils Ole Tippen-
hauer, and Saman A. Zonouz. Hiding in plain sight?
on the efficacy of power side channel-based control flow
monitoring. In USENIX Security Symposium, pages 661–
678. USENIX Association, 2022.

[9] Marius Herget, Faezeh Sadat Saadatmand, Martin
Bor, Ignacio González Alonso, Todor Stefanov, Benny
Akesson, and Andy D Pimentel. Design space ex-
ploration for distributed cyber-physical systems: State-
of-the-art, challenges, and directions. In 2022 25th
Euromicro Conference on Digital System Design (DSD),
pages 632–640. IEEE, 2022.

[10] Monica Hutchins, Herbert Foster, Tarak Goradia, and
Thomas J. Ostrand. Experiments of the effectiveness of
dataflow- and controlflow-based test adequacy criteria. In
ICSE, pages 191–200. IEEE Computer Society / ACM
Press, 1994.

[11] Salman H. Khan, Muzammal Naseer, Munawar Hayat,
Syed Waqas Zamir, Fahad Shahbaz Khan, and Mubarak
Shah. Transformers in vision: A survey. ACM Comput.
Surv., 54(10s):200:1–200:41, 2022.

[12] Yannan Liu, Lingxiao Wei, Zhe Zhou, Kehuan Zhang,
Wenyuan Xu, and Qiang Xu. On code execution tracking
via power side-channel. In CCS, pages 1019–1031.
ACM, 2016.

[13] Alireza Nazari, Nader Sehatbakhsh, Monjur Alam,
Alenka G. Zajic, and Milos Prvulovic. EDDIE: em-based
detection of deviations in program execution. In ISCA,
pages 333–346. ACM, 2017.

[14] Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam,
Honglak Lee, and Andrew Y. Ng. Multimodal deep
learning. In ICML, pages 689–696. Omnipress, 2011.

[15] Michael A. Schuette and John Paul Shen. Processor con-
trol flow monitoring using signatured instruction streams.
IEEE Trans. Computers, 36(3):264–276, 1987.

[16] Cees Snoek, Marcel Worring, and Arnold W. M. Smeul-
ders. Early versus late fusion in semantic video analysis.
In ACM Multimedia, pages 399–402. ACM, 2005.

[17] Youssef Souissi, Shivam Bhasin, Sylvain Guilley,
Maxime Nassar, and Jean-Luc Danger. Towards different
flavors of combined side channel attacks. In CT-RSA,
volume 7178 of Lecture Notes in Computer Science,
pages 245–259. Springer, 2012.

[18] François-Xavier Standaert and Cédric Archambeau. Us-

https://keras.io/examples/timeseries/timeseries_classification_transformer
https://keras.io/examples/timeseries/timeseries_classification_transformer
https://github.com/Michael-amar/Twos_complement.git
https://github.com/Michael-amar/Twos_complement.git


ing subspace-based template attacks to compare and
combine power and electromagnetic information leak-
ages. In CHES, volume 5154 of Lecture Notes in
Computer Science, pages 411–425. Springer, 2008.

[19] Samuel J. Stone and Michael A. Temple. Radio-
frequency-based anomaly detection for programmable
logic controllers in the critical infrastructure. Int. J. Crit.
Infrastructure Prot., 5(2):66–73, 2012.

[20] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In NIPS,
pages 5998–6008, 2017.

[21] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-
mond, Clement Delangue, Anthony Moi, Pierric Cistac,
Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison,
Sam Shleifer, Patrick von Platen, Clara Ma, Yacine
Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexan-
der M. Rush. Transformers: State-of-the-art natural
language processing. In EMNLP (Demos), pages 38–45.
Association for Computational Linguistics, 2020.


	Introduction
	Threat Model

	Related Work
	Control-Flow Monitoring Using Side Channels
	Multimodal Learning
	Multimodal Cryptanalytic Side-Channel Attacks

	Methodology
	Overview
	Experimental Setup
	Data Collection and Processing
	Machine Learning
	Unimodal Classifiers
	Multimodal Classifiers


	Results
	Proposed Multimodal Classifier
	Comparison With Early- and Late-Integration Multimodal Classifier
	Choosing the Output Layer

	Discussion
	Overhead analysis
	Limitations
	Future Work
	Conclusion


